1. Consider the initial-value problem

$$x' = f(x, t), \quad x(t_0) = x_0,$$

where x is an n-dimensional vector, and f an n-dimensional vector function defined for $t \in I$: $|t - t_0| \le \alpha$ and $x \in D$: $|x - x_0| \le \beta$.

- (a) State Cauchy-Peano Theorem concerning the existence of a solution to the initial-value problem.
- (b) Define Lipschitz condition satisfied by f(x,t), and state its relevance to the uniqueness of the solution to the initial-value problem.

Show that the following vector functions (i) and (ii) satisfy a Lipschitz condition and give in each case a value for the Lipschitz constant L.

(i)
$$f(x,t) = \left(x_1x_2, e^{-x_1^2} + (\sin t)x_2^2\right)^T$$
, where $|x| < M$ and $t \in (-\infty, +\infty)$.

(ii)
$$f(x,t) = \left(x_2(1+x_2^2)^{-1}, e^{-|x_2|} + x_1\right)^T$$
, where x in the whole plane.

You may use without proof the inequality: $\mathrm{e}^{-r} \geq 1 - r$ for any $r \geq 0$.

(c) Suppose that y(t) satisfies

$$y' = f(y, t), \quad y(t_0) = y_0 \quad \text{with} \quad |y_0 - x_0| \le \beta,$$

and f satisfies a Lipschitz condition with a Lipschitz constant L. Show that

$$|x(y) - y(t)| \le |x_0 - y_0| + L \int_{t_0}^t |(x(s) - y(s))| ds.$$

for $t \geq t_0$. Hence show that

$$|x(t) - y(t)| \le |x_0 - y_0| \exp\{L(t - t_0)\}.$$

Comment on the implication of this result on the dependence of the solution on the initial data.

2. (a) Consider the linear differential system

$$x'(t) = A(t) x(t) \tag{1}$$

where A(t) is an $n \times n$ matrix of period T > 0, i.e. A(t + T) = A(t) for any t.

Let X(t) be a fundamental matrix of the system. State how X(t+T) and X(t) are related.

Define the characteristic (Floquet) multipliers and exponents.

Show that if ρ is a characteristic multiplier, there exists a solution x(t) such that $x(t+T)=\rho x(t)$.

Explain how one could calculate numerically the characteristic exponents to determine the structure of general solution.

(b) Suppose that the matrix A(t) in (1) takes the form

$$A(t) = a(t)I + C,$$

where a(t) is a scalar periodic function, i.e. a(t+T)=a(t), I is a unit matrix and C a constant matrix. Let $x(t)=y(t)\exp\{\int_0^t a(s)ds\}$. Deduce the equation satisfied by y(t). Hence or otherwise show that there exists a periodic solution with period T, if C has an eigenvalue λ such that

$$\lambda + \frac{1}{T} \int_0^T a(t)dt = 0.$$

Give the condition for the subharmonic resonance.

3. (a) State the Linearised Stability Principle for a steady solution, x^c , of a nonlinear autonomous system,

$$x' = f(x);$$

explain the relevance of any matrix eigenvalue problem involved.

(b) The nonlinear plane system

$$x'_1(t) = x_2,$$

 $x'_2(t) = -x_1 - x_1^3 - ax_1^2x_2,$

has a steady solution (0,0), where a is a constant. What conclusion may you draw about the nature of the steady solution (0,0) based on a linearised stability analysis?

Write this system into a second-order system. Hence or otherwise construct a Liapunov function $V(x_1, x_2)$ to show that the steady solution (0, 0) is uniformly stable for $a \ge 0$.

By using La Salle's Invariance Principle, show further that for a > 0 the steady solution (0,0) is asymptotically stable, and hence determine the nature of (0,0).

(c) Determine the nature of (0,0) for a=0. Sketch the trajectories for both a=0 and a>0 in the phase plane.

4. (a) For the plane autonomous system

$$x' = f(x)$$

where $x = (x_1, x_2)^T$ and $f = (f_1, f_2)^T$ are two-dimensional vectors, prove that if $\operatorname{div} f$ is strictly of one sign in a region R, then there is no periodic solution that lies entirely in R.

(b) A nonlinear oscillator is described by the equation

$$u'' + \epsilon [u^2 - a]u' + u + \epsilon u^3 = 0$$

where ϵ and a are constants.

Show that there is no periodic solution for a < 0 using the result in (a).

In order to use the Poincaré-Lindstedt method to find the periodic solution for $|\epsilon|\ll 1$ and a>0, the variable $\tau=\omega t$ is introduced. Derive the equation satisfied by $u=u(\tau)$.

Expand $u(\tau)$ and ω as follows

$$u = u_0(\tau) + \epsilon u_1(\tau) + \dots ,$$

$$\omega = 1 + \epsilon \omega_1 + \dots .$$

Find the equation for u_0 and show that it has the solution $u_0 = A_0 \cos \tau$.

Derive the equation satisfied by u_1 , and determine the values of ω_1 and A_0 .

Determine the stability of this periodic solution by considering

$$\int_0^T \operatorname{div} f(u(t)) dt$$

for a suitable function f and T which you need to specify.

5. (a) For the plane system

$$x' = \mu x - y,$$

$$y' = -y + x^3,$$

obtain the critical points (x_0, y_0) , determine their stability properties and find the value of μ at any bifurcation point including a Hopf bifurcation point.

Sketch the bifurcation diagram of x_0 , the first component of the critical points (x_0, y_0) , against μ ; label the stable and unstable branches.

(b) Suppose that the system is modified to

$$x' = \mu x - y,$$

$$y' = -y + x^3 + a,$$

by adding to the second equation a constant term, which represents a small imperfection.

Show that there is one critical point for $\mu < \mu_c = 3(a/2)^{2/3}$ and three critical points for $\mu > \mu_c$. Determine their stability properties and sketch the bifurcation diagram of x_0 against μ ; label the stable and unstable branches.