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1. Evaluate

I =

∫ ∞

0

lnx dx

(a+ x2)

by first constructing a complex integral and then using contour integration.

Hence or otherwise evaluate ∫ ∞

0

dx

(a+ x2)2
.

2. FN(a) is defined by

FN(a) =

∫ π

0

cos(Nθ)dθ

1− 2a cos θ + a2

where a ≥ 0 and a 6= 1 with N a positive integer. Show that

FN(a) =
1
2
Re (GN (a))

where

GN(a) =

∫ 2π

0

eiNθdθ

1− 2a cos θ + a2

Evaluate GN(a) by contour integration, distinguishing the cases 0 ≤ a < 1 and a > 1 .
Hence find FN(a) .

Why does the analysis fail when a = 1 ?
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3. The function u(r, t) satisfies the differential equation

∂2u

∂t2
=
∂2u

∂r2
+
2

r

∂u

∂r
0 ≤ r ≤ 1

the initial conditions

u(r, 0) = 0
∂u(r, 0)

∂t
= 1, 0 ≤ r ≤ 1

and the boundary conditions

u(1, t) = 1 t > 0

and that u(0, t) is finite.

Show that the Laplace transform of u can be expressed in the form

u(r, s) = r−1w(r, s)

where
d2w

dr2
− s2w = 0 .

Hence determine u(r, s) ,

show that

u(r, t) = A0 +
2

r

∞∑

N=1

BN sin(Nrπ) cos(Nπt)

and determine the coefficients A0 and BN .
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4. Use the Fourier transform over x to reduce the equation

∂2U

∂x2
+
∂2U

∂y2
− α2U = 0

to an ordinary differential equation. Solve this equation subject to the boundary conditions

U(x, 0) = 0

U(x, 1) = δ(x)

where δ(x) is the Dirac delta function.

Show that the transform u(ζ, y) has no branch points and evaluate U(x, y) by contour

integration to get an expression of the form

U(x, y) =
∞∑

N=1

(−1)N+1AN exp
(
−x
√
α2 +N2π2

)
sin(Ny)

and determine AN .
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5. Obtain an asymptotic expansion of the integral

I =

∫ ∞

0

e−tx/2 xt e−tx
3/6 dx

as t→∞ in the form

I =
e−αt
√
t

(

A1 + 0

(
1

t

))

and determine A1 and α .
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