UNIVERSITY OF LONDON
 BSc and MSci EXAMINATIONS (MATHEMATICS)

May 2007

This paper is also taken for the relevant examination for the Associateship.

M3M4 / M4M4

TECHNIQUES OF COMPLEX VARIABLE THEORY

Date: Friday, 18th May 2007
Time: 10am-12pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Evaluate

$$
I=\int_{0}^{\infty} \frac{\ln x d x}{\left(a+x^{2}\right)}
$$

by first constructing a complex integral and then using contour integration.
Hence or otherwise evaluate

$$
\int_{0}^{\infty} \frac{d x}{\left(a+x^{2}\right)^{2}}
$$

2. $\quad F_{N}(a)$ is defined by

$$
F_{N}(a)=\int_{0}^{\pi} \frac{\cos (N \theta) d \theta}{1-2 a \cos \theta+a^{2}}
$$

where $a \geq 0$ and $a \neq 1$ with N a positive integer. Show that

$$
F_{N}(a)=\frac{1}{2} \operatorname{Re}\left(G_{N}(a)\right)
$$

where

$$
G_{N}(a)=\int_{0}^{2 \pi} \frac{e^{i N \theta} d \theta}{1-2 a \cos \theta+a^{2}}
$$

Evaluate $G_{N}(a)$ by contour integration, distinguishing the cases $0 \leq a<1$ and $a>1$. Hence find $F_{N}(a)$.

Why does the analysis fail when $a=1$?
3. The function $u(r, t)$ satisfies the differential equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r} \quad 0 \leq r \leq 1
$$

the initial conditions

$$
u(r, 0)=0 \quad \frac{\partial u(r, 0)}{\partial t}=1, \quad 0 \leq r \leq 1
$$

and the boundary conditions

$$
u(1, t)=1 \quad t>0
$$

and that $u(0, t)$ is finite.
Show that the Laplace transform of u can be expressed in the form

$$
\bar{u}(r, s)=r^{-1} \bar{w}(r, s)
$$

where

$$
\frac{d^{2} \bar{w}}{d r^{2}}-s^{2} \bar{w}=0
$$

Hence determine $\bar{u}(r, s)$,
show that

$$
u(r, t)=A_{0}+\frac{2}{r} \sum_{N=1}^{\infty} B_{N} \sin (N r \pi) \cos (N \pi t)
$$

and determine the coefficients A_{0} and B_{N}
4. Use the Fourier transform over x to reduce the equation

$$
\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}-\alpha^{2} U=0
$$

to an ordinary differential equation. Solve this equation subject to the boundary conditions

$$
\begin{aligned}
& U(x, 0)=0 \\
& U(x, 1)=\delta(x)
\end{aligned}
$$

where $\delta(x)$ is the Dirac delta function.
Show that the transform $\bar{u}(\zeta, y)$ has no branch points and evaluate $U(x, y)$ by contour integration to get an expression of the form

$$
U(x, y)=\sum_{N=1}^{\infty}(-1)^{N+1} A_{N} \exp \left(-x \sqrt{\alpha^{2}+N^{2} \pi^{2}}\right) \sin (N y)
$$

and determine A_{N}.
5. Obtain an asymptotic expansion of the integral

$$
I=\int_{0}^{\infty} e^{-t x / 2} x^{t} e^{-t x^{3} / 6} d x
$$

as $t \rightarrow \infty$ in the form

$$
I=\frac{e^{-\alpha t}}{\sqrt{t}}\left(A_{1}+0\left(\frac{1}{t}\right)\right)
$$

and determine A_{1} and α

