Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2005

This paper is also taken for the relevant examination for the Associateship.

M3M4/M4M4 Techniques of Complex Variable Theory

Date: Tuesday 31st May 2005 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Using a "keyhole" contour show that

$$
\int_{0}^{\infty} \frac{x^{P} d x}{(x+a)(x+b)}=\frac{\pi}{\sin (P \pi)} \frac{1}{b-a} f(a, b)
$$

where $0<a<b$ and $-1<P<0$. Determine the function $f(a, b)$.
Hence or otherwise show that

$$
\int_{0}^{\infty} \frac{x^{P} d x}{(x+2)(x+1)^{2}}=\frac{\pi}{\sin (P \pi)}\left(1+P-2^{P}\right)
$$

2. The function $u(x, t)$ satisfies the partial differential equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{2}{x} \frac{\partial u}{\partial x}, \quad 0 \leq x \leq 1
$$

with the initial conditions

$$
u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=1, \quad 0 \leq x \leq 1
$$

the boundary conditions

$$
u(1, t)=0, \quad t>0
$$

and the condition that $u(0, t)$ is finite.
Show that the Laplace transform of u can be expressed in the form

$$
\widehat{u}(x, s)=x^{-1} \widehat{v}(x, s),
$$

where

$$
\frac{d^{2} \widehat{v}}{d x^{2}}-s^{2} \widehat{v}=-x, \quad 0 \leq x \leq 1
$$

Hence determine $\widehat{u}(x, s)$ and show that

$$
u(x, t)=\frac{2}{\pi^{2} x} \sum_{N=1}^{\infty} A_{N} \sin (N \pi x) \sin (N \pi t) .
$$

Determine A_{N}.
3. (i) Evaluate the Fourier transform of

$$
f_{a}(x)=\frac{1}{2 a} \exp (-|x| / a)
$$

Hence show that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp (-i \zeta x) d \zeta=\delta(x) \tag{A}
\end{equation*}
$$

if $\delta(x)$ is considered as the limit as $a \rightarrow 0$ of $f_{a}(x)$.
(ii) Use the result (A) and properties of the δ function to show that the Fourier transform of $J_{0}(\lambda x)$, where

$$
J_{0}(\lambda x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \beta) d \beta
$$

and λ is real and positive and given by

$$
\int_{-\infty}^{\infty} \exp (i \zeta x) J_{0}(\lambda x) d x=F(\zeta, \lambda)
$$

where ζ is real and

$$
F(\zeta, \lambda)=0, \quad|\zeta|>\lambda
$$

Find $F(\zeta, \lambda)$ when $|\zeta|<\lambda$.
Hence show that the Fourier transform of $\cos (\mu x) J_{0}(\lambda x)$ is

$$
\frac{1}{2}[F(\zeta+\mu, \lambda)+F(\zeta-\mu, \lambda)]
$$

where μ is real and positive.
4. $\quad \phi_{1}(x, y)$ satisfies $\frac{\partial^{2} \phi_{1}}{\partial x^{2}}+\frac{\partial^{2} \phi_{1}}{\partial y^{2}}=0$ in $-\infty<x<\infty, \quad 0 \leq y \leq 1$, and $\phi_{2}(x)$ satisfies $\frac{\partial^{2} \phi_{2}}{\partial x^{2}}+\frac{\partial^{2} \phi_{2}}{\partial y^{2}}=0 \quad$ in $-\infty<x<\infty, \quad 1 \leq y \leq 2$, where
(1) $\phi_{1}=0$ on $y=0$ for all x,
(2) $\frac{\partial \phi_{2}}{\partial y}=e^{-|x|}$ on $y=2$ for all x, and
(3) $\phi_{1}=\phi_{2}$ and $\mu_{1} \frac{\partial \phi_{1}}{\partial y}=\mu_{2} \frac{\partial \phi_{2}}{\partial y}$ on $y=1$ for all x, where μ_{1} and μ_{2} are real constants.

Show that the Fourier transform

$$
\Phi_{1}(\zeta, y)=\int_{-\infty}^{\infty} \exp (i \zeta x) \phi_{1}(x, y) d x
$$

can be written as

$$
\Phi_{1}(\zeta, y)=A_{1} \sinh (\zeta y)
$$

and the Fourier transform $\Phi_{2}(\zeta, y)$ of $\phi_{2}(x, y)$ as

$$
\Phi_{2}(\zeta, y)=A_{2} \sinh (\zeta(1-y))+B_{2} \cosh (\zeta(1-y))
$$

where condition (1) has been satisfied and A_{1}, A_{2} and B_{2} remain to be determined using conditions (2) and (3).

Hence determine $\Phi_{1}(\zeta, y)$ and show that this function has only poles with zero real parts in the complex ζ plane.
In the special case when $\sqrt{\frac{\mu_{1}}{\mu_{2}}} \ll 1$, show that $\phi_{1}(x, y)$ has the form

$$
\phi_{1}(x, y)=\exp (-x) f_{1}(y)+\exp \left(-\sqrt{\mu_{1} / \mu_{2}} x\right) f_{2}(y)
$$

as $x \rightarrow+\infty$, and determine $f_{1}(y)$ and $f_{2}(y)$.
5. Use the saddle point approximation or otherwise to get an expansion of the integrals

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty} e^{-t x} x^{t} e^{-t x^{2}} d x \\
& I_{2}=\int_{0}^{\infty} e^{t x} x^{t} e^{-t x^{2}} d x
\end{aligned}
$$

each in the form

$$
I=\frac{b e^{-a t}}{\sqrt{t}}\left(1+O\left(\frac{1}{\sqrt{t}}\right)\right)
$$

as t tends to infinity, and determine the constants a and b in each case. The term $O\left(\frac{1}{\sqrt{t}}\right)$ denotes an error of order $\frac{1}{\sqrt{t}}$.

Hence or otherwise determine the leading term in the expansion of

$$
\int_{-\infty}^{\infty} e^{-t x}|x|^{t} e^{-t x^{2}} d x
$$

as t tends to infinity.

