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1. By choosing a suitable contour for the integral

J =

∮

c

lN(z)dz

(1 + z4)

evaluate the integral

I =

∫ ∞

0

dr

(1 + r4)
.

2. (i) Given

F (t) =

∫ t

0

g(t− x)f(x)dx

Deduce the theorem

F (s) = g(s)f(s)

where

f(s) =

∫ ∞

0

e−stf(t)dt etc

(ii) Use the above theorem to solve the integral equation

y(x) = e−x + 3

∫ x

0

e2t−2xy(t)dt

(iii) Solve the integral equation in (ii) by reducing it to a differential equation.
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3. Use the Laplace transform to solve the equation

∂2θ

∂x2
=
∂2θ

∂t2

Subject to the conditions

1) θ(0, t) = 0 2)
∂θ

∂x
(L, t) = 0

3) θ(x, 0) = αx 4)
∂θ

∂t
(x, 0) = 0

Express your solution in the form

∂(x, t) =
∞∑

N=0

fN(x) cos

(
(2N + 1)πt

2L

)

and determine the functions fN(x).

c© 2004 University of London M3M4 Page 3 of 5



4. The region −∞ < x <∞, −∞ < y <∞ is divided into two halves y > 0 and y < 0. For
y > 0 there is a potential φ1 and an associated flux in the y direction μ1

dφ1
∂y
where μ1 is a

constant.

For y < 0 the corresponding potential and flux are φ2 and μ2
∂φ2
∂y
.

φ1 and φ2 satisfy the Laplace equation

∇2φi = 0 i = 1, 2.

The following conditions are to hold

(i)

μ1
∂φ1

∂y
= μ2

∂φ2

∂y
ony = 0

(ii)

φ1 − φ2 = δ(x) ony = 0, δ(x)istheDiracdeltafunction.

(iii)

φ1tendstozeroas(x
2 + y2)→∞iny > 0

φ2tendstozeroas(x
2 + y2)→∞iny < 0

Use the fourier transform over x to find the functions φ1 and φ2.
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5. The integral I(λ) is defined for λ real and positive, by

I(λ) =

∫ ∞

−∞

eiλz
2

(1 + z2
dz

Show that z = 0 is a saddle point and that the path of steepest descent is x = y where

z = x+ iy (x and y are real).

Show that ∫ R

−R

eiλz
2
dz

(1 + z2)
=

∫

CR

eiλz
2
dz

(1 + z2)

Where CR consists of circular arcs joining −R to −Reπi/4 and Reπi/4 to R together with
the straight line joining −Reπi/4 to Reπi/4 and draw the corresponding contour.

Hence show that if λ >> 1

I(λ) ∼ eπi/4
(π
λ

)1/2(

a−
b

λ
+ ..

)

and find a and b.
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