1. (a) Define carefully the integrals of a PDE of the form

$$
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u)
$$

and explain their importance.
(b) Find a first order quasilinear PDE whose general solution is given implicitly by

$$
u^{2}+x u+y=f(x y)
$$

Find the solution of this PDE which satisfies

$$
u=0 \quad \text { on } \quad x=1
$$

Discuss whether there is a solution for this PDE satisfying

$$
u=0 \quad \text { on } \quad x=0 .
$$

If there is no solution in this case, explain the difference between the two problems.
2. (a) Explain what is meant by the envelope of the 1-parameter family of curves in the (x, y) plane:

$$
y=f(x, s) .
$$

(b) Find two independent integrals of the PDE:

$$
x y u_{x}+u^{2} u_{y}=-u y .
$$

Find the solution of this PDE which satisfies $u=x$ on $y=0$. Identify where this solution breaks down.
(c) Find the projection onto the (x, y) plane of the characteristic through the point $(t, 0, t)$. Find the envelope of these projected characteristics.
3. (a) Define and explain the terms elliptic, parabolic and hyperbolic for the second order quasilinear PDE

$$
A(x, y) u_{x x}+B(x, y) u_{x y}+C(x, y) u_{y y}=0 .
$$

(b) Show that the PDE:

$$
u_{x x}+2 \frac{1}{F^{\prime}(y)} u_{x y}+\frac{1}{F^{\prime}(y)^{2}} u_{y y}=0
$$

is parabolic. Find and solve the ode for its characteristic coordinate. Here $F^{\prime}(y)$ is differentiable, and its indefinite integral $F(y)$ is monotonic.
(c) Find also a suitable non-characteristic coordinate, and hence write the PDE in its canonical form.
4. (a) Show that the initial value problem

$$
\begin{array}{cc}
u_{x y}=0, & y>0, \\
u=f(x), & y=0, \\
u_{y}=g(x), & y=0,
\end{array}
$$

is ill-posed.
(b) Show that the Dirichlet problem

$$
\nabla^{2} u=0, \quad x^{2}+y^{2}>1,
$$

with the boundary conditions

$$
u=f(\theta), \quad x=\cos (\theta), \quad y=\sin (\theta)
$$

and

$$
u \rightarrow 0 \quad \text { as } \quad\left(x^{2}+y^{2}\right) \rightarrow \infty
$$

has a unique solution. Write down a formula for the solution in terms of the Green's function for the problem, stating the defining properties of the Green's function $G\left(x, y ; x^{\prime}, y^{\prime}\right)$.
(c) Show that in (b), if $f(\theta)=f(\pi-\theta)$, then the solution $u(x, y)$ is even in x. Hence solve the mixed boundary value problem:

$$
\nabla^{2} u=0, \quad x^{2}+y^{2}>1, \quad x>0
$$

with the boundary conditions

$$
u=f(\theta), \quad x=\cos (\theta), \quad y=\sin (\theta), \quad \theta \in[-\pi / 2, \pi / 2]
$$

and

$$
\frac{\partial u}{\partial x}=0, \quad x=0
$$

and

$$
u \rightarrow 0 \quad \text { as } \quad\left(x^{2}+y^{2}\right) \rightarrow \infty
$$

Again you are not required to write down the Green's function $G\left(x, y ; x^{\prime}, y^{\prime}\right)$ explicitly.
5. (a) Show directly that $U\left(x, t ; x^{\prime}, t^{\prime}\right)$, given by

$$
\begin{aligned}
& U\left(x, t ; x^{\prime}, t^{\prime}\right)= \frac{1}{2 \sqrt{\pi\left(t-t^{\prime}\right)}} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{4\left(t-t^{\prime}\right)}\right), \quad t>t^{\prime} \\
& U\left(x, t ; x^{\prime}, t^{\prime}\right)=0 \quad t<t^{\prime}
\end{aligned}
$$

satisfies

$$
U_{t}=U_{x x}+\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) .
$$

What PDE does $U\left(x, t ; x^{\prime}, t^{\prime}\right)$, considered as a function of $\left(x^{\prime}, t^{\prime}\right)$, satisfy?
(b) Construct a function $V\left(x, t ; x^{\prime}, t^{\prime}\right)$ satisfying

$$
\begin{gathered}
V_{t}=V_{x x}+\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right), \quad x>0 \\
\left.\frac{\partial V}{\partial x}\right|_{x=0}=0
\end{gathered}
$$

(c) Solve the initial value problem

$$
\begin{gathered}
u_{t}=u_{x x}, \quad x>0, \quad t>0, \\
u(x, 0)=u_{0}(x) \\
u_{x}(0, t)=0 .
\end{gathered}
$$

