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1. Find two integrals of the partial differential equation

xux − 2y uy = xu,

and hence write down the general solution.

Find the solution which satisfies the boundary condition

u = cos(y) on x = 1.

Consider also the boundary condition

u = cos(y) on x = 0,

and explain carefully any differences between the two problems.

2. Define carefully the terms ”integral” and ”characteristic” for a 1st order quasilinear pde,

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

If I and J are differentiable functions of x, y and u, then write down the most general

integral of the pde: ∣
∣
∣
∣
∣
∣

Ix Iy Iu
Jx Jy Ju
ux uy −1

∣
∣
∣
∣
∣
∣
= 0.

A characteristic of this pde passes through a point (x0, y0, u0). What are the equations of

this characteristic?

Find a pde with the integrals (x2+ y2+ u2) and xyu, and find the projected characteristic

passing through (1, y0, 1).

Find the envelope of the projected characteristics.
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3. A second order quasilinear pde is

A(x, y)uxx +B(x, y)ux y + C(x, y) uy y = K(x, y, u, ux, uy)

Define the characteristics of this pde and explain what is meant by saying it is elliptic,

parabolic or hyperbolic.

Reduce to canonical form the pde

(x2 − 1)2uxx = uy y

in the region x > 1.

4. i. Prove the uniqueness theorem for the Dirichlet problem for Laplace’s equation in a

simply-connected plane region Ω:






52u = 0 , x ∈ Ω

u = f(x) , x ∈ ∂Ω

ii. The Dirichlet Green’s function for Laplaces equation in the disc of radius a is polar

coordinates is

G0(r, θ, r0, θ0) =
1

4π
ln

[
r2 + r20 − 2r r0 cos(θ − θ0)
r2r20
a2
+ a2 − 2r r0 cos(θ − θ0)

]

Find the Dirchlet Green’s function for Laplace’s equation in the semicircle 0 < r < a,

0 < θ < π.

Hence solve the Dirichlet problem

52u = 0 0 < r < a, 0 < θ < π

u = 1 on θ = 0;

u = 0 on θ = π;

u = 0 on r = a.

Give the solution in integral form.
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5. The equation

ut = uxx (1)

is to be solved in the quarter-plane

x > 0

t > 0

with boundary conditions

u(x, 0) = u0(x) (2)

u(0, t) = w(t) (3)

Prove that the solution is unique.

Discuss the analogous problem in the region x > 0, t < 0.

Show how the fundamental solution of the heat equation

G0(x, t; x0, t0) =






exp((x−x0)2 / 4(t−t0))
2
√
π(t−t0)

, t > t0

0, t < t0.

may be used to solve the initial and boundary value problem in x > 0, t > 0, (1), (2), (3).

Hence or otherwise solve

ut = uxx x > 0 , t > 0

with

u(x, 0) = 0

u(0, t) =
1
√
t

Do not attempt to evaluate any solution in integral form.
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