1. Let X^{a} and Y_{b} be contravariant and covariant vectors respectively. Show that $T_{b}^{a}:=X^{a} Y_{b}$ is a type $(1,1)$ rank two tensor. From the covariant derivative of covariant and contravariant vectors show that

$$
\nabla_{c} T_{b}^{a}=\partial_{c} T_{b}^{a}+\Gamma_{d c}^{a} T_{b}^{d}-\Gamma_{b c}^{d} T_{d}^{a}
$$

Furthermore show that if $S_{b c}^{a}:=T_{b}^{a} V_{c}$, where V_{c} is a covariant vector, then

$$
\nabla_{d} S_{b c}^{a}=\partial_{d} S_{b c}^{a}-\Gamma_{b d}^{e} S_{e c}^{a}-\Gamma_{d c}^{e} S_{b e}^{a} .
$$

Turn over. . .
(C) University of London 2006
2. The Einstein's equation in non-empty space is

$$
G^{a b}=A T^{a b}
$$

where $G^{a b}=R^{a b}-R g^{a b} / 2$ is the Einstein's tensor and $T^{a b}$ is the energymomentum tensor. State and prove the contracted Bianchi identities from the Bianchi identities:

$$
\nabla_{a} R_{e b c}^{d}+\nabla_{b} R_{e c a}^{d}+\nabla_{c} R_{e a b}^{d}=0
$$

A cloud of non-interacting dust particles with density $\varrho_{0}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ has energy-momentum tensor

$$
T^{a b}=\varrho_{0} v^{a} v^{b}
$$

where

$$
v^{a}=\frac{d x^{a}}{d s}
$$

is the tangent vector to the path $x^{a}=x^{a}(s)$. From the contracted Bianchi identities show that $x^{a}=x^{a}(s)$ satisfies the geodesic equations,

$$
\frac{d^{2} x^{a}}{d s^{2}}+\Gamma_{b c}^{a} \frac{d x^{b}}{d s} \frac{d x^{c}}{d s}=0
$$

3. The Schwarzchild solution has line element

$$
(d s)^{2}=\left(1-\frac{2 m}{r}\right) c^{2}(d t)^{2}-\frac{(d r)^{2}}{1-\frac{2 m}{r}}-r^{2}\left[(d \theta)^{2}+\sin ^{2} \theta(d \phi)^{2}\right]
$$

where (r, θ, ϕ) are the standard polar coordinates. A massive particle falls radially towards the surafce $r=2 m$ from $R(>2 m)$. Show that the time it takes to reach $r=2 m+\varepsilon$ from R as measured by a stationary observer is

$$
c t \sim 2 m \ln \left(\frac{2 m}{\varepsilon}\right)
$$

for small ε. Show it takes only a finite time from the point of view of an observer attached to the massive partticle. How long will it take for a photon to fall radially towards $r=2 m$?

Turn over. . .
(c) University of London 2006
4. The line element of a two dimensional surface with coordinates (x, y) is

$$
(d s)^{2}=[f(x)+g(y)]\left[(d x)^{2}+(d y)^{2}\right],
$$

where $f(x)$ is a function of x only and $g(y)$ is a function of y only. Determine the geodesic equations and show that the geodesics are level curves of $\psi(x, y)$ where

$$
\begin{aligned}
\frac{\partial \psi}{\partial x} & =\frac{1}{\sqrt{f(x)+\alpha}} \\
\frac{\partial \psi}{\partial y} & =-\frac{1}{\sqrt{g(y)-\alpha}}
\end{aligned}
$$

and α is an arbitrary constant.
5. A vector $\lambda^{a}, a=0,1,2,3$, orthogonal to the tangent vector $d x^{a} / d \tau$, where $d \tau$ is the propertime interval, is being parallel transported around a circle of fixed radius r in the Schwarzchild space-time where the line element reads;

$$
(d s)^{2}=\left(1-\frac{2 m}{r}\right) c^{2}(d t)^{2}-r^{2}(d \varphi)^{2}
$$

Show that the tangent vector is

$$
\left(\frac{d x^{a}}{d \tau}\right)=(A, 0,0, A \Omega)
$$

where

$$
A=\sqrt{\frac{r}{r-3 m}} \text { and } \Omega=c \sqrt{\frac{m}{r^{3}}}
$$

From the parallel transport equations of λ^{a} deduce that

$$
\begin{gathered}
\frac{d \lambda^{1}}{d \tau}-\frac{r \Omega}{A} \lambda^{3}=0 \\
\frac{d \lambda^{2}}{d \tau}=0 \\
\frac{d \lambda^{3}}{d \tau}+\frac{A \Omega}{r} \lambda^{1}=0
\end{gathered}
$$

Show that after one revolution in which the coordinate time has elasped by $\Delta t=2 \pi / \Omega$, the final spatial direction of λ^{a} deviates from the intial direction by

$$
2 \pi\left(1-\sqrt{1-\frac{3 m}{r}}\right)
$$

You may choose τ and t so that when τ is zero t is also zero and assume that initially λ^{a} is radial.

The non-zero connections are
$\Gamma_{10}^{0}=\frac{m}{r} \frac{1}{1-2 m / r}, \quad \Gamma_{00}^{1}=\frac{m c^{2}}{r^{2}}\left(1-\frac{2 m}{r}\right), \quad \Gamma_{33}^{1}=-r\left(1-\frac{2 m}{r}\right), \quad \Gamma_{13}^{3}=\frac{1}{r}$.
The orthogonality condition is $g_{a b} \frac{d x^{a}}{d \tau} \lambda^{b}=0$.
(c) University of London 2006

