
1. (i) Show that the average energy of a system with partition function Z is given by

E = −∂ ln(Z)

∂β
.

Consider a gas of identical and indistinguishable mono-atomic non-interacting particles of mass

m.

(ii) Calculate the partition function for this ideal gas.

(iii) Calculate the heat capacity of the ideal gas.

(iv) Use the thermodynamics identity

dU = TdS − pdV

to derive the ideal gas equation of state.

2. Consider a time signal f(t) that can assume two values A and −A. The signal switches from

one value to the other with probability ν per time.

(i) Show that the probability that the signal has not switched during the a time interval of

duration t is given by

p0(t) = e−νt.

(ii) Show, e.g. by induction, that the probability that f(t) has changed value exactly n times

during the time t is given by

pn(t) =
(νt)n

n!
e−νnt.

(iii) Calculate the auto-correlation function

C(T ) = 〈f(t)f(t + T )〉t

for all t ∈ R.

(iv) Calculate the power spectrum.

3. Consider percolation on a d-dimensional hyper-cubic lattice. Let P∞ denote the probability

that an occupied site belongs to the infinite cluster.

(i) Use mean field theory to determine the critical percolation density pc and the order

parameter exponent β in

P∞ ∝ (p − pc)
β.



(ii) Let D denote the fractal dimension of the spanning cluster. Derive the scaling relation.

D = d − β/ν,

where ν is the correlation length exponent.

(iii) Show that

P∞ = 1 − 1

p

∞∑

s=1

sns.

(iv) For one dimensional percolation find ns and use the expression in part (iii) to show that

P∞ = 0 for all p < 1.

4. Consider the Ising model given by the Hamiltonian

H = −
N∑

i=1

Sih,

where Si ∈ {−1, 1} and h is an external magnetic field.

(i) Calculate the partition function.

(ii) Calculate the average energy and derive the limiting behaviour for T → 0 and T → ∞.

(iii) Calculate the heat capacity C(T ) and show that C(T ) is maximal for T = h/(kx0),

where x0 is the solution to x tanh(x) = 1.

(iv) Show that the magnetic susceptibility χ = ∂M/∂h is proportional to 1/T for h 	 kT .

[You may use without proof: tanh(x) = x − x3/3 + · · · for small x. ]

5. Consider the random neighbour version of a sandpile model on a d-dimensional hypercube in

the limit of large system size N → ∞.

(i) Explain how the dynamics can be mapped on to a branching process.

Assume that adding a grain to a site makes the site relax with probability ν.

(ii) Determine the branching probabilities pk that a relaxing site generates k new relaxations.

The generator function gZn(s) for the stochastic variable Zn (= number of sites excited in

time step n) satisfies the relation

gZn(s) = gZ1(gZn−1(s)).

(iii) Use this relation to express the average 〈Zn〉 in terms of the average branching ratio.

(iv) Show that the random neighbour sandpile is critical when ν = 1/(2d).
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