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1. A system is defined in terms of the Hamiltonian

H = ε
N∑

i=1

ni, ni ∈ {0, 1, 2}.

(i) Calculate the partition function.

(ii) Calculate the equilibrium energy.

(iii) Calculate the Helmholtz free energy.

(iv) Calculate the entropy and determine the limits limT→0 S(T ) and limT→∞ S(T ).

2. (i) Use the classical equipartition theorem to explain why the molar heat capacity of a

monoatomic gas is

CV =
3

2
R

and of a diatomic gas made up of rigid molecules is

CV =
5

2
R.

(ii) According to thermodynamics the entropy at temperature T relative to that at some

reference temperature T0 is given by

S(T ) = S(T0) +

∫ T

T0

CV

T
dT.

The Third Law of thermodynamics states that S(T )→ 0 as T → 0. Show that the results in
part (i) are inconsistent with the Third Law.

(iii) Explain how Einstein by use of Quantum Mechanics resolved the inconsistency between

i) and ii).

3. In a certain system the free energy F (φ, T ) is an even function of an order parameter φ, so

that F (φ, T ) = F (−φ, T ).

(i) Expand the free energy up to fourth order in φ and describe the assumptions about the

temperature dependence of the coefficients that lead to a second order phase transition

at a critical temperature Tc . Derive the equilibrium temperature dependence of φ under

these assumptions.

(ii) Show that the equilibrium free energy is twice differentiable with respect to T , with

continuous first derivative, and discontinuous second derivative.

(iii) Explain Landau’s argument for the absence of a phase transition at non-zero temperature

in one dimension for models with short range interaction, as for example the Ising chain.
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4. Consider a branching process defined in terms of the branching probabilities

pk =
e−xxk

k!
.

(i) Calculate the generator function for the branching probabilities.

(ii) Determine the average branching ratio σ.

Consider a stochastic variable

SN = χ1 + χ2 + ∙ ∙ ∙+ χN ,

where χi are all independent and identically distributed and the number of terms N is

fluctuating independently. The generator functions for SN , χ and N satisfy

gSN = gN(gχ(s)) .

(iii) Express the average size Zn of generation number n of a branching process in terms of

the branching ratio σ.

Let the stochastic variable B assume positive integer values. Consider A = 1 + B.

(iv) Show that the generator functions for A and B are related in the following way

gA(s) = sgB(s).

(v) Use the result in (iv) to show that the average tree size is given by

〈Y∞〉 =
1

1− σ
.

5. Consider the one dimensional Ising model

H = −J
N∑

i=1

SiSi+1 +NJ,

with Si = ±1 for i = 1, . . . , N + 1 .

(i) Calculate the energy E1 of the first excited state of the system in which the spin

configuration can be described in terms of a single kink.

(ii) Assume that the chain in a higher excited state can be described by a gas of non-

interacting kinks distributed along the chain. Show that the partition function is given

by

Z = [1 + e−βE1 ]N .

(iii) Show that the average number of kinks 〈n〉 is given by

〈n〉 = −
1

E1

∂

∂β
lnZ .

(iv) Consider 〈l〉 = N/〈n〉 to be a measure of the correlation length and derive its temperature
dependence. Comment on the limits T → 0 and T →∞.
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