1. A particle is in a quantum state with the wave-function of the form:

$$\psi(x) = \frac{1}{(2\pi)^{1/4}\sqrt{a}} \exp\left(\frac{i}{\hbar}p_0 x - \frac{x^2}{4a^2}\right)$$

where p_0 and a are parameters with dimensions of momentum and length, respectively.

- (i) Write down the probability distribution for the co-ordinate x. Hence calculate $\langle x \rangle$, $\langle x^2 \rangle$ and the standard deviation $\Delta x = \sqrt{\langle (x \langle x \rangle)^2 \rangle}$.
- (ii) Find the eigenstates of the momentum operator $\hat{p} = -i\hbar d/dx$ and determine the probability distribution of the momentum eigenvalues p. Hence obtain $\langle \hat{p} \rangle$, $\langle \hat{p}^2 \rangle$ and Δp .
- (iii) What is the Heisenberg uncertainty relation in the state $\psi(x)$?

[The Gaussian integral $\int_{-\infty}^{\infty} dx e^{-\alpha x^2} = \sqrt{\pi/\alpha}$, where α is a positive constant, can be used without proof.]

2. A particle of mass m moves in the potential of the form

$$U(x) = \lambda \delta(x) + \begin{cases} 0, & \text{for } x < 0\\ U_0, & \text{for } x \ge 0 \end{cases}$$

with $U_0 > 0$.

Plot the potential. Using the continuity conditions for the wave-function at x = 0, find the reflection coefficient R(E) as a function of energy for $E > U_0$. Obtain the limiting form of R(E) as $E \to \infty$. Determine $R(U_0)$ and argue what R(E) should be equal to for $0 < E < U_0$. Hence plot R(E) for all E > 0.

3. A particle of mass m moves in the potential of the form

$$U(x) = \begin{cases} -F_1 x, & \text{for } x < 0\\ F_2 x, & \text{for } x \ge 0 \end{cases}$$

with $F_{1,2} > 0$.

Plot the potential. Determine the classical turning points $x = a_{1,2}$. Using the Bohr-Sommerfeld quantisation rule,

$$\int_{a_1}^{a_2} dx p(x) = \pi \hbar \left(n + \frac{1}{2} \right) \;,$$

where n is a non-negative integer and p(x) is the classical momentum, find the energy eigenvalues E_n in the quasi-classical approximation. Find the limiting form of the density of states $\Delta E_n = E_{n+1} - E_n$ for large values of n. Is it an increasing or decreasing function of n? Explain why.

4. The Hamiltonian of a two-dimensional harmonic oscillator of mass m and frequency ω is given by:

$$\widehat{H}_0 = \sum_{i=1}^2 \left[\frac{\widehat{p}_i^2}{2m} + \frac{1}{2} m \omega^2 \widehat{x}_i^2 \right] ,$$

where \hat{x}_i and \hat{p}_i are the canonical coordinate and momentum operators with the commutation relation $[\hat{x}_i, \hat{p}_j] = i\delta_{ij}$ (in units such that $\hbar = 1$).

The ladder operators are defined by:

$$\widehat{a}_i = \frac{1}{\sqrt{2m\omega}} (m\omega \widehat{x}_i + i\widehat{p}_i), \quad \widehat{a}_i^{\dagger} = \frac{1}{\sqrt{2m\omega}} (m\omega \widehat{x}_i - i\widehat{p}_i).$$

Using the above commutation relation find out what commutation relations $[\hat{a}_i, \hat{a}_j^{\dagger}]$ are satisfied by the ladder operators. Derive the Hamiltonian of the two-dimensional harmonic oscillator in terms of the ladder operators.

Using the commutation relations, calculate the ground-state averages $\langle 0|\hat{p}_1\hat{p}_2^3|0\rangle$ and $\langle 0|\hat{p}_1^2\hat{p}_2^2|0\rangle$. [Hint: operators \hat{a}_i annihilate the ground state $\hat{a}_i|0\rangle = 0$.]

5. A particle has the angular momentum l = 1 (in units of \hbar). Let $|m\rangle$ be the basis of states, which diagonalises the z-projection of the angular momentum operator: $\hat{l}_z |m\rangle = m |m\rangle$, m = 1, 0, -1.

Find the eigenvalues of the x-projection, \hat{l}_x , of the angular momentum operator. Also obtain the corresponding eigenfunctions in terms of linear combinations of $|m\rangle$'s. Hence determine the probability distribution for all possible values of \hat{l}_x in the state $|m\rangle$.

Hint: the \widehat{l}_x matrix in the |m
angle basis is given by

$$\widehat{l}_x = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} .$$