1. A particle is in a quantum state with the wave-function of the form:

$$
\psi(x)=\frac{1}{(2 \pi)^{1 / 4} \sqrt{a}} \exp \left(\frac{i}{\hbar} p_{0} x-\frac{x^{2}}{4 a^{2}}\right),
$$

where $p_{0}$ and $a$ are parameters with dimensions of momentum and length, respectively.
(i) Write down the probability distribution for the co-ordinate $x$. Hence calculate $\langle x\rangle$, $<x^{2}>$ and the standard deviation $\Delta x=\sqrt{\left\langle(x-\langle x\rangle)^{2}\right\rangle}$.
(ii) Find the eigenstates of the momentum operator $\widehat{p}=-i \hbar d / d x$ and determine the probability distribution of the momentum eigenvalues $p$. Hence obtain $\langle\widehat{p}\rangle,\left\langle\widehat{p}^{2}\right\rangle$ and $\Delta p$.
(iii) What is the Heisenberg uncertainty relation in the state $\psi(x)$ ?
[The Gaussian integral $\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}=\sqrt{\pi / \alpha}$, where $\alpha$ is a positive constant, can be used without proof.]
2. A particle of mass $m$ moves in the potential of the form

$$
U(x)=\lambda \delta(x)+ \begin{cases}0, & \text { for } \quad x<0 \\ U_{0}, & \text { for } \quad x \geq 0\end{cases}
$$

with $U_{0}>0$.
Plot the potential. Using the continuity conditions for the wave-function at $x=0$, find the reflection coefficient $R(E)$ as a function of energy for $E>U_{0}$. Obtain the limiting form of $R(E)$ as $E \rightarrow \infty$. Determine $R\left(U_{0}\right)$ and argue what $R(E)$ should be equal to for $0<E<U_{0}$. Hence plot $R(E)$ for all $E>0$.
3. A particle of mass $m$ moves in the potential of the form

$$
U(x)= \begin{cases}-F_{1} x, & \text { for } \quad x<0 \\ F_{2} x, & \text { for } \quad x \geq 0\end{cases}
$$

with $F_{1,2}>0$.
Plot the potential. Determine the classical turning points $x=a_{1,2}$. Using the BohrSommerfeld quantisation rule,

$$
\int_{a_{1}}^{a_{2}} d x p(x)=\pi \hbar\left(n+\frac{1}{2}\right)
$$

where $n$ is a non-negative integer and $p(x)$ is the classical momentum, find the energy eigenvalues $E_{n}$ in the quasi-classical approximation. Find the limiting form of the density of states $\Delta E_{n}=E_{n+1}-E_{n}$ for large values of $n$. Is it an increasing or decreasing function of $n$ ? Explain why.
4. The Hamiltonian of a two-dimensional harmonic oscillator of mass $m$ and frequency $\omega$ is given by:

$$
\widehat{H}_{0}=\sum_{i=1}^{2}\left[\frac{\widehat{p}_{i}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \widehat{x}_{i}^{2}\right]
$$

where $\widehat{x}_{i}$ and $\widehat{p}_{i}$ are the canonical coordinate and momentum operators with the commutation relation $\left[\widehat{x}_{i}, \widehat{p}_{j}\right]=i \delta_{i j}$ (in units such that $\hbar=1$ ).

The ladder operators are defined by:

$$
\widehat{a}_{i}=\frac{1}{\sqrt{2 m \omega}}\left(m \omega \widehat{x}_{i}+i \widehat{p}_{i}\right), \quad \widehat{a}_{i}^{\dagger}=\frac{1}{\sqrt{2 m \omega}}\left(m \omega \widehat{x}_{i}-i \widehat{p}_{i}\right) .
$$

Using the above commutation relation find out what commutation relations $\left[\widehat{a}_{i}, \widehat{a}_{j}^{\dagger}\right]$ are satisfied by the ladder operators. Derive the Hamiltonian of the two-dimensional harmonic oscillator in terms of the ladder operators.
Using the commutation relations, calculate the ground-state averages $\langle 0| \widehat{p}_{1} \widehat{p}_{2}^{3}|0\rangle$ and $\langle 0| \widehat{p}_{1}^{2} \widehat{p}_{2}^{2}|0\rangle$. [Hint: operators $\widehat{a}_{i}$ annihilate the ground state $\widehat{a}_{i}|0\rangle=0$.]
5. A particle has the angular momentum $l=1$ (in units of $\hbar$ ). Let $|m\rangle$ be the basis of states, which diagonalises the $z$-projection of the angular momentum operator: $\widehat{l}_{z}|m\rangle=m|m\rangle$, $m=1,0,-1$.
Find the eigenvalues of the $x$-projection, $\widehat{l}_{x}$, of the angular momentum operator. Also obtain the corresponding eigenfunctions in terms of linear combinations of $|m\rangle$ 's. Hence determine the probability distribution for all possible values of $\widehat{l}_{x}$ in the state $|m\rangle$.
Hint: the $\widehat{l}_{x}$ matrix in the $|m\rangle$ basis is given by

$$
\widehat{l}_{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

