Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A4

Quantum Mechanics I

Date: Thursday, 1st June 2006 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. A particle of mass m is subject to a potential V(x) in one dimension given by

$$V(x) = \begin{cases} \infty & x < 0 \\ -V_0 & 0 \le x \le a \\ 0 & x > a, \end{cases}$$

where $V_0 > 0$.

Show the condition for a stationary bound state of energy E is that it satisfies the equation,

$$-\cot(ka) = \frac{1}{k}\sqrt{\frac{2mV_0}{\hbar^2} - k^2},$$

where
$$k^2=\frac{2m}{\hbar^2}(E+V_0).$$

Find the minimum value of V_0 for a bound state to exist.

2. The operator \widehat{a} and its Hermitian conjugate \widehat{a}^{\dagger} have a commutator, $[\widehat{a},\widehat{a}^{\dagger}]=1$, and the operator $\widehat{N}=\widehat{a}^{\dagger}\widehat{a}$ has an eigenstate $|\alpha\rangle$ with eigenvalue α , $\widehat{N}|\alpha\rangle=\alpha|\alpha\rangle$.

Show that

- (i) the state $\widehat{a}^{\dagger}|\alpha\rangle$ is an eigenstate of \widehat{N} with an eigenvalue $(\alpha+1)$,
- (ii) the state $\widehat{a}|lpha
 angle$ is an eigenstate of \widehat{N} with an eigenvalue (lpha-1),
- (iii) the expectation value of \widehat{N} , $\langle \widehat{N} \rangle$, is such that $\langle \widehat{N} \rangle \geq 0$.

Deduce that α must be a positive integer n or zero.

If $|n\rangle$ are normalised eigenstates of \widehat{N} , show that

$$\widehat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$
, and $\widehat{a}|n\rangle = \sqrt{n}|n-1\rangle$.

Use the eigenstates of \widehat{N} to deduce a matrix representation of the operator $\widehat{x}=\widehat{a}+\widehat{a}^{\dagger}.$

3. (i) If Hermitian operators \widehat{A} and \widehat{B} , which correspond to physical observables A and B, have a commutator $[\widehat{A},\widehat{B}]=i\widehat{C}$, prove the uncertainty relation,

$$\langle (\widehat{A} - \langle \widehat{A} \rangle)^2 \rangle \langle (\widehat{B} - \langle \widehat{B} \rangle)^2 \rangle \ge \frac{\langle \widehat{C} \rangle^2}{4}$$
.

(ii) The state $|l,m\rangle$ is an eigenstate of $\widehat{\mathbf{l}}^2$, and \widehat{l}_z , such that

$$\widehat{\mathbf{l}}^2|l,m\rangle = l(l+1)\hbar^2|l,m\rangle, \qquad \widehat{l}_z|l,m\rangle = m\hbar|l,m\rangle,$$

where $\widehat{\mathbf{1}}=(\widehat{l}_x,\widehat{l}_y,\widehat{l}_z)$ is the angular momentum operator, l is a positive integer or zero, and $m=-l,-l+1,\ldots,l-1,l$. Show that in the state $|l,l\rangle$ the expectation values $\langle \widehat{l}_x \rangle = \langle \widehat{l}_y \rangle = 0$, and $\langle \widehat{l}_x^2 + \widehat{l}_y^2 \rangle = \hbar^2 l$, and prove that this value for $\langle \widehat{l}_x^2 + \widehat{l}_y^2 \rangle$ is the minimum possible consistent with the uncertainty relation.

[You may assume the angular momentum commutation relations, $[\widehat{l}_x,\widehat{l}_y]=i\hbar \widehat{l}_z$, $[\widehat{l}_z,\widehat{l}_x]=i\hbar \widehat{l}_y$, and $[\widehat{l}_y,\widehat{l}_z]=i\hbar \widehat{l}_x$.]

4. (i) A system is described by a Hamiltonian H, and is such that the corresponding operator \widehat{H} has a complete orthonormal set of discrete eigenstates, $\{|n\rangle\}$ with corresponding eigenvalues $\{E_n\}$, such that $E_{n+1} \geq E_n$, where n is a positive integer or zero. If $\langle \psi | \widehat{H} | \psi \rangle$ is the expectation value with respect to a possible normalised wave-function ψ , show that the ground state energy E_0 satisfies the inequality,

$$\langle \psi | \widehat{H} | \psi \rangle \geq E_0$$
.

(ii) A particle of mass m moves in a one dimensional potential $V(x)=\lambda x^4$. By taking a trial wave-function of the form, $\psi=(\alpha/\pi)^{\frac{1}{4}}e^{-\alpha x^2/2}$, show that the ground state energy E_0 must be such that

$$E_0 \le \frac{3\hbar^2}{8m} \left(\frac{6m\lambda}{\hbar^2}\right)^{1/3}.$$

[You may assume the result $\int_{-\infty}^{\infty}e^{-\alpha x^2}\,dx=\sqrt{\frac{\pi}{\alpha}}\,.]$

5. The spherical harmonics, $Y_{l,m}(\theta_1,\phi_1)$ and $Y_{l',m'}(\theta_2,\phi_2)$, are normalised eigenstates of the total and z-component of angular momentum, $\widehat{\mathbf{l}}_i^2$ and $\widehat{l}_{i,z}$, for particles i=1 and i=2, respectively. For l=l'=1, construct eigenstates $|L,M\rangle$ of the total angular momentum operators $\widehat{\mathbf{L}}^2$ and \widehat{L}_z , corresponding to the quantum numbers, L=2 and L=1, with M=1 for both cases, where $\widehat{L}=\widehat{l}_1+\widehat{l}_2$.

Calculate the expectation values of $l_{1,z}^2 + l_{2,z}^2$ in each of these states.

[You may assume the relation, $\hat{l}_\pm Y_{l,m}=\hbar\sqrt{l(l+1)-m(m\pm1)}Y_{l,m\pm1}$, where $\hat{l}_\pm=\hat{l}_x\pm i\hat{l}_y$.]