Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A4

Quantum Mechanics I

Date: Thursday, 1st June 2006
Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. A particle of mass m is subject to a potential $V(x)$ in one dimension given by

$$
V(x)= \begin{cases}\infty & x<0 \\ -V_{0} & 0 \leq x \leq a \\ 0 & x>a\end{cases}
$$

where $V_{0}>0$.

Show the condition for a stationary bound state of energy E is that it satisfies the equation,

$$
-\cot (k a)=\frac{1}{k} \sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k^{2}},
$$

where $k^{2}=\frac{2 m}{\hbar^{2}}\left(E+V_{0}\right)$.
Find the minimum value of V_{0} for a bound state to exist.
2. The operator \widehat{a} and its Hermitian conjugate \widehat{a}^{\dagger} have a commutator, $\left[\widehat{a}, \widehat{a}^{\dagger}\right]=1$, and the operator $\widehat{N}=\widehat{a}^{\dagger} \widehat{a}$ has an eigenstate $|\alpha\rangle$ with eigenvalue $\alpha, \widehat{N}|\alpha\rangle=\alpha|\alpha\rangle$.

Show that
(i) the state $\widehat{a}^{\dagger}|\alpha\rangle$ is an eigenstate of \widehat{N} with an eigenvalue $(\alpha+1)$,
(ii) the state $\widehat{a}|\alpha\rangle$ is an eigenstate of \widehat{N} with an eigenvalue $(\alpha-1)$,
(iii) the expectation value of $\widehat{N},\langle\widehat{N}\rangle$, is such that $\langle\widehat{N}\rangle \geq 0$.

Deduce that α must be a positive integer n or zero.
If $|n\rangle$ are normalised eigenstates of \widehat{N}, show that

$$
\widehat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \text { and } \quad \widehat{a}|n\rangle=\sqrt{n}|n-1\rangle .
$$

Use the eigenstates of \widehat{N} to deduce a matrix representation of the operator $\widehat{x}=\widehat{a}+\widehat{a}^{\dagger}$.
3. (i) If Hermitian operators \widehat{A} and \widehat{B}, which correspond to physical observables A and B, have a commutator $[\widehat{A}, \widehat{B}]=i \widehat{C}$, prove the uncertainty relation,

$$
\left\langle(\widehat{A}-\langle\widehat{A}\rangle)^{2}\right\rangle\left\langle(\widehat{B}-\langle\widehat{B}\rangle)^{2}\right\rangle \geq \frac{\langle\widehat{C}\rangle^{2}}{4}
$$

(ii) The state $|l, m\rangle$ is an eigenstate of $\hat{\mathrm{l}}^{2}$, and \widehat{l}_{z}, such that

$$
\widehat{\mathbf{l}}^{2}|l, m\rangle=l(l+1) \hbar^{2}|l, m\rangle, \quad \widehat{l}_{z}|l, m\rangle=m \hbar|l, m\rangle,
$$

where $\widehat{\mathbf{l}}=\left(\hat{l}_{x}, \widehat{l}_{y}, \hat{l}_{z}\right)$ is the angular momentum operator, l is a positive integer or zero, and $m=-l,-l+1, \ldots, l-1, l$. Show that in the state $|l, l\rangle$ the expectation values $\left\langle\widehat{l}_{x}\right\rangle=\left\langle\widehat{l_{y}}\right\rangle=0$, and $\left\langle\widehat{l_{x}^{2}}+\widehat{l}_{y}^{2}\right\rangle=\hbar^{2} l$, and prove that this value for $\left\langle\widehat{l}_{x}^{2}+\widehat{l}_{y}^{2}\right\rangle$ is the minimum possible consistent with the uncertainty relation.
[You may assume the angular momentum commutation relations, $\left[\widehat{l}_{x}, \widehat{l}_{y}\right]=i \hbar \widehat{l}_{z}$, $\left[\widehat{l}_{z}, \widehat{l}_{x}\right]=i \hbar \widehat{l}_{y}$, and $\left.\left[\widehat{l}_{y}, \widehat{l}_{z}\right]=i \hbar \widehat{l}_{x}.\right]$
4. (i) A system is described by a Hamiltonian H, and is such that the corresponding operator \widehat{H} has a complete orthonormal set of discrete eigenstates, $\{|n\rangle\}$ with corresponding eigenvalues $\left\{E_{n}\right\}$, such that $E_{n+1} \geq E_{n}$, where n is a positive integer or zero. If $\langle\psi| \widehat{H}|\psi\rangle$ is the expectation value with respect to a possible normalised wave-function ψ, show that the ground state energy E_{0} satisfies the inequality,

$$
\langle\psi| \widehat{H}|\psi\rangle \geq E_{0}
$$

(ii) A particle of mass m moves in a one dimensional potential $V(x)=\lambda x^{4}$. By taking a trial wave-function of the form, $\psi=(\alpha / \pi)^{\frac{1}{4}} e^{-\alpha x^{2} / 2}$, show that the ground state energy E_{0} must be such that

$$
E_{0} \leq \frac{3 \hbar^{2}}{8 m}\left(\frac{6 m \lambda}{\hbar^{2}}\right)^{1 / 3}
$$

[You may assume the result $\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}$.]
5. The spherical harmonics, $Y_{l, m}\left(\theta_{1}, \phi_{1}\right)$ and $Y_{l^{\prime}, m^{\prime}}\left(\theta_{2}, \phi_{2}\right)$, are normalised eigenstates of the total and z-component of angular momentum, $\widehat{\mathbf{l}}_{i}^{2}$ and $\widehat{l}_{i, z}$, for particles $i=1$ and $i=2$, respectively. For $l=l^{\prime}=1$, construct eigenstates $|L, M\rangle$ of the total angular momentum operators $\widehat{\mathbf{L}}^{2}$ and \widehat{L}_{z}, corresponding to the quantum numbers, $L=2$ and $L=1$, with $M=1$ for both cases, where $\widehat{L}=\widehat{l}_{1}+\widehat{l}_{2}$.

Calculate the expectation values of $l_{1, z}^{2}+l_{2, z}^{2}$ in each of these states.
[You may assume the relation, $\widehat{l}_{ \pm} Y_{l, m}=\hbar \sqrt{l(l+1)-m(m \pm 1)} Y_{l, m \pm 1}$, where $\widehat{l}_{ \pm}=\widehat{l}_{x} \pm i \widehat{l}_{y}$.]

