1. A particle of mass m moves in one dimension on the interval $(-\infty, \infty)$ under the influence of the potential

$$
V(x)=-\frac{\hbar^{2} Q}{2 m}(\delta(x-a)+\delta(x+a)),
$$

where Q is a positive constant and $\delta(x)$ is the Dirac delta function. Show that the Schroedinger equation can be written in this form:

$$
\psi^{\prime \prime}(x)+Q(\delta(x-a)+\delta(x+a)) \psi(x)-\gamma^{2} \psi(x)=0
$$

where γ is related to the bound state energy $E(<0)$ via

$$
\gamma=\sqrt{\frac{-2 m E}{\hbar}}
$$

Show that the bound state energies can be determined from

$$
Q a-\xi=f(\xi)
$$

where

$$
f(\xi)=\frac{\xi}{\tanh \xi},
$$

if the wave function is odd, and

$$
f(\xi)=\xi \tanh \xi
$$

if the wave function is even. Here $\xi=\gamma a$. From a graphical consideration, show that if $0<Q a<1$, there is only one bound state and the corresponding wave function is even and that there are two bound states for $1<Q a<\infty$. Determine the parity of the wave function of the higher energy bound state.
2. A spin- $\frac{1}{2}$ particle in a magnetic field $\mathbf{B}=B \mathbf{i}$ (B is a constant) has the Hamiltonian,

$$
\hat{H}=\mu \sigma_{x} B,
$$

where μ is the Bohr magneton and

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Find the allowed energies and the corresponding eigenvectors by solving the time-independent Schrödinger equation,

$$
\hat{H} \phi=E \phi,
$$

where ϕ is a two-component column vector. From this show that the timedependent Schrödinger equation

$$
i \hbar \frac{d \psi(t)}{d t}=\hat{H} \psi(t)
$$

has the general solution

$$
\psi(t)=c_{1}\binom{1}{1} \mathrm{e}^{-i \mu B t / \hbar}+c_{2}\binom{1}{-1} \mathrm{e}^{+i \mu B t / \hbar},
$$

where c_{1} and c_{2} are arbitrary constants. If at time $t=0$, the particle is in the eigenstate \hat{S}_{y} with eigenvalue $\frac{\hbar}{2}$, show that the probability for the particle to remain in the same spin state at time t is $\cos ^{2} \mu B t / \hbar$. What is the probability of the particle to be in the spin state $\binom{0}{1}$ given the same initial condition?

Turn over. . .
(C) University of London 2006
3. A particle with mass m in one dimension is described by the wave function $\Psi(x, t), \quad-\infty<x<\infty$. Define the expectation value $\langle\hat{A}\rangle$ of the operator \hat{A}. Use the Time Dependent Schrödinger equation to show that

$$
\frac{d\langle\hat{A}\rangle}{d t}=\frac{i}{\hbar}\langle[\hat{H}, \hat{A}]\rangle .
$$

From this deduce that

$$
\frac{d^{2}\langle\hat{A}\rangle}{d t^{2}}=-\frac{1}{\hbar^{2}}\langle[\hat{H},[\hat{H}, \hat{A}]]\rangle
$$

Suppose the particle has Hamiltonian,

$$
\hat{H}=\frac{\hat{p}}{2 m}+V(x),
$$

show that Newton's second law is satisfied on "average":

$$
m \frac{d^{2}\langle x\rangle}{d t^{2}}=\left\langle-\frac{d V}{d x}\right\rangle
$$

For a charged particle under the influence of a constant electric field \mathcal{E}, $V(x)=-e \mathcal{E} x$. Show that,

$$
<x>=\frac{e \mathcal{E}}{2 m} t^{2}+a t+b
$$

where a and b are arbitrary constant.
4. Let \hat{A} and \hat{B} be Hermitean operators with commutator, $[\hat{A}, \hat{B}]=i \hat{C}$. Show that

$$
\left\langle\hat{A}^{2}\right\rangle\left\langle\hat{B}^{2}\right\rangle \geq \frac{\langle\hat{C}\rangle^{2}}{4}
$$

The Hamiltonian of a one-dimensional harmonic oscillator of mass m is

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2}}{2} \hat{x}^{2} .
$$

Show that

$$
\langle\hat{H}\rangle \geq \frac{\left\langle\hat{p}^{2}\right\rangle}{2 m}+\frac{m \omega^{2} \hbar^{2}}{8\left\langle\hat{p}^{2}\right\rangle}
$$

and hence

$$
\langle\hat{H}\rangle \geq \frac{\hbar \omega}{2}
$$

Turn over. . .
(c) University of London 2006
5. Define the orbital angular momentum operator $\hat{\mathbf{L}}=\left(\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}\right)$ for a particle three dimensions. Deduce the commutation relation

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}
$$

The normalized angular momentum eigenstates ψ_{m} satisfy the equations

$$
\hat{\mathbf{L}}^{2} \psi_{m}=l(l+1) \hbar^{2} \psi_{m}, \quad \hat{L}_{z} \psi_{m}=m \hbar \psi_{m}
$$

By considering $\left\langle\psi_{m} \mid \hat{L}_{+}^{2} \psi_{m}\right\rangle$ and $\left\langle\psi_{m} \mid \hat{L}_{-}^{2} \psi_{m}\right\rangle$, where

$$
\hat{L}_{ \pm}:=\hat{L}_{x} \pm i \hat{L}_{y}
$$

show that

$$
\left\langle\psi_{m} \mid \hat{L}_{x}^{2} \psi_{m}\right\rangle=\left\langle\psi_{m} \mid \hat{L}_{y}^{2} \psi_{m}\right\rangle
$$

and find the value in terms of l and m. Show also that the real part of $\left\langle\psi_{m} \mid \hat{L}_{x} \hat{L}_{y} \psi_{m}\right\rangle$ is zero, and deduce that

$$
\left\langle\psi_{m} \mid \hat{L}_{x} \hat{L}_{y} \psi_{m}\right\rangle=i \frac{m \hbar^{2}}{2}
$$

