
1. A particle of mass m moves in one dimension on the interval (−∞,∞) under
the influence of the potential

V (x) = −
h̄2Q

2m
(δ(x− a) + δ(x+ a)) ,

where Q is a positive constant and δ(x) is the Dirac delta function. Show
that the Schroedinger equation can be written in this form:

ψ′′(x) +Q (δ(x− a) + δ(x+ a))ψ(x)− γ2ψ(x) = 0,

where γ is related to the bound state energy E(< 0) via

γ =

√
−2mE
h̄

.

Show that the bound state energies can be determined from

Qa− ξ = f(ξ),

where

f(ξ) =
ξ

tanh ξ
,

if the wave function is odd, and

f(ξ) = ξ tanh ξ,

if the wave function is even. Here ξ = γa. From a graphical consideration,
show that if 0 < Qa < 1, there is only one bound state and the corresponding
wave function is even and that there are two bound states for 1 < Qa <∞.
Determine the parity of the wave function of the higher energy bound state.
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2. A spin−1
2
particle in a magnetic field B = Bi (B is a constant) has the

Hamiltonian,
Ĥ = μσxB,

where μ is the Bohr magneton and

σx =
(
0 1
1 0

)

.

Find the allowed energies and the corresponding eigenvectors by solving the
time-independent Schrödinger equation,

Ĥφ = Eφ,

where φ is a two-component column vector. From this show that the time-
dependent Schrödinger equation

ih̄
dψ(t)

dt
= Ĥψ(t),

has the general solution

ψ(t) = c1

(
1
1

)

e−iμBt/h̄ + c2

(
1
−1

)

e+iμBt/h̄,

where c1 and c2 are arbitrary constants. If at time t = 0, the particle is in the
eigenstate Ŝy with eigenvalue

h̄
2
, show that the probability for the particle to

remain in the same spin state at time t is cos2 μBt/h̄.What is the probability

of the particle to be in the spin state
(
0
1

)

given the same initial condition?
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3. A particle with mass m in one dimension is described by the wave function
Ψ(x, t), −∞ < x <∞. Define the expectation value 〈Â〉 of the operator Â.
Use the Time Dependent Schrödinger equation to show that

d〈Â〉
dt
=
i

h̄
〈 [Ĥ, Â] 〉.

From this deduce that

d2〈Â〉
dt2

= −
1

h̄2
〈 [Ĥ, [Ĥ, Â]] 〉.

Suppose the particle has Hamiltonian,

Ĥ =
p̂

2m
+ V (x),

show that Newton’s second law is satisfied on “average”:

m
d2〈x〉
dt2

=

〈

−
dV

dx

〉

.

For a charged particle under the influence of a constant electric field E ,
V (x) = −eEx. Show that,

< x >=
eE
2m

t2 + at+ b,

where a and b are arbitrary constant.
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4. Let Â and B̂ be Hermitean operators with commutator, [Â, B̂] = iĈ. Show
that

〈Â2〉〈B̂2〉 ≥
〈Ĉ〉2

4
.

The Hamiltonian of a one-dimensional harmonic oscillator of mass m is

Ĥ =
p̂2

2m
+
mω2

2
x̂2.

Show that

〈Ĥ〉 ≥
〈p̂2〉
2m
+
mω2h̄2

8〈p̂2〉

and hence

〈Ĥ〉 ≥
h̄ω

2
.
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5. Define the orbital angular momentum operator L̂ = (L̂x, L̂y, L̂z) for a particle
three dimensions. Deduce the commutation relation

[L̂x, L̂y] = ih̄L̂z.

The normalized angular momentum eigenstates ψm satisfy the equations

L̂2ψm = l(l + 1)h̄
2ψm, L̂zψm = mh̄ψm.

By considering 〈ψm|L̂2+ψm〉 and 〈ψm|L̂
2
−ψm〉, where

L̂± := L̂x ± iL̂y,

show that
〈ψm|L̂

2
xψm〉 = 〈ψm|L̂

2
yψm〉

and find the value in terms of l and m. Show also that the real part of
〈ψm|L̂xL̂yψm〉 is zero, and deduce that

〈ψm|L̂xL̂yψm〉 = i
mh̄2

2
.
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