Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A23/M4A23

Introduction to Chaos Theory

Date: Monday, 8th May 2006

Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a map.
 - (a) Define the (forward) orbit $\mathcal{O}(x)$ of a point x.
 - (b) Define the omega-limit $\omega(x)$ of x.
 - (c) Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map with distinct complex conjugate eigenvalues $\alpha \pm i\beta$ with $\alpha^2 + \beta^2 = 1$.
 - (i) Give a specific example of a map A for which $\omega(x)$ is a circle for every $x \neq 0$.
 - (ii) Give a specific example of a map A for which $\omega(x)$ is *not* a circle for every x.
 - (d) Give an example of a nonlinear map $f : \mathbb{R}^2 \to \mathbb{R}^2$ for which $\omega(x) = \mathbb{S}^1$, where \mathbb{S}^1 is the unit circle if and only if $x \in \mathbb{S}^1$.
- 2. Let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be a circle homeomorphism.
 - (a) Define the lift of f.
 - (b) Define the rotation number of f.
 - (c) Define what it means to say that two circle homemorphisms f and g are topologically conjugate.
 - (d) State Denjoy's Theorem about circle maps.
 - (e) Sketch the construction of Denjoy's counterexample and explain what it is a counterexample to.
- 3. Let $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$f(x,y) = (2x + 3x^5y^3 - x^{27}y^5, \ 3y - 213x^{67}y + xy^{21})$$

and

$$g(x,y) = (27x + 13y - 29yx^{20}, \ 27y - 13x + 2x^4y^{24} - xy^{89})$$

- (a) Calculate the derivative maps of f and g.
- (b) Calculate the derivatives $Df_{0,0}$ and $Dg_{0,0}$ of f and g at the fixed points at the origin.
- (c) Cite relevant results from the course to deduce that f and g are topologically conjugate on some neighbourhood of the origin.

4. Consider the map $f:[0,1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 3x & \text{if } 0 \le x \le 1/2 \,, \\ 3(1-x) & \text{if } 1/2 \le x \le 1. \end{cases}$$

Let

$$\Lambda = \{ x : f^k(x) \in [0,1] \text{ for all } k \ge 0 \}.$$

Prove that there exists a bijection $h : \Lambda \to \Sigma_2^+$, where $\Sigma_2^+ = \{0, 1\}^{\mathbb{N}}$ is the set of one-sided sequences of the symbols 0 and 1.

5. Let

$$\Sigma_{10} = \{0, 1, 2, \dots, 9\}^{\mathbb{Z}}$$

be the space of bi-infinite sequences of symbols 0, 1, 2, .., 9 with the metric

$$d(\underline{\mathbf{x}}, \underline{\mathbf{y}}) = \sum_{i=-\infty}^{\infty} \frac{|x_i - y_i|}{10^{|i|}} \; .$$

- (a) (i) Give the general dynamical definition of the stable and unstable sets $W^s(\underline{x})$ and $W^u(\underline{x})$ of an arbitrary point $\underline{x} \in \Sigma_{10}$.
 - (ii) Give an equivalent definition purely in terms of the properties of the symbol sequences.
- (b) (i) Give the general metric definition of what it means for a set $X \subset \Sigma_{10}$ to be *dense* in Σ_{10} .
 - (ii) Give an equivalent definition purely in terms of the properties of the symbol sequences.
- (c) Deduce the following properties.
 - (i) The stable (and unstable) sets of any point are dense in Σ_{10} .
 - (ii) The stable sets of two distinct points \underline{x} and \underline{y} either coincide or are disjoint.
 - (iii) The stable set $W^s(\underline{x})$ and the unstable set $W^u(\underline{y})$ of two distinct points always intersect and $W^s(\underline{x}) \cap W^u(\underline{y})$ is dense in Σ_{10} .
- (d) Let $\underline{z} \in \Sigma_{10}$ be a sequence which never contains the digit 3. Show that the orbit of \underline{z} is not dense in Σ_{10} .