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1. Let I ⊂ R be an open interval and let f : I → I be a C1 map. State what it means
for a fixed point p ∈ I to be attracting.

Suppose that p ∈ I is a fixed point for f and that |f ′ (p)| < 1. Give a direct proof of
the fact that p is attracting.

2. Let
∑
=
∑+
2 = {0, 1}

N denote the set of all one-sided infinite sequences of symbols 0

and 1 and let d be the metric on
∑
defined by

d(a , b) = 2−Nwhere N = min {k ∈ N : ak ≡ bk} .

1. Define the shift map σ :
∑
→
∑
.

2. Define the adding machine map A :
∑
→
∑
.

3. Show that A is continuous.

4. Show that the inverse A−1 is well defined by giving the explicit rule for A−1, and show

that A−1 is continuous.

5. Give the definition of a dense orbit in
∑
and characterise the property of having a

dense orbit in terms of the symbol sequence.

6. Give examples of sequences in
∑
whose orbits are dense for A and for σ respectively.

Justify your answer.

7. Are σ and A topologically conjugate? Why?
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3. Let f : R → R be the map given by f(x) = x2 − 3.75. Let p0 denote the positive fixed
point for f and let I = [−p0 , p0]. Let

Λ = {x : fn (x) ∈ I ∀n ≥ 0} .

Prove that there exists a bijection h : Λ →
∑
where

∑
is the set of one-sided infinite

sequences of the symbols 0 and 1.

4. Let I be a closed interval and let f , g : I be C1 maps.

1. Say what it means for f , g to be topologically conjugate.

2. Say what it means for f , g to be C1 ε close.

3. Say what it means for f to be structurally stable.

4, Show that the bijection h in the previous question is a topological conjugacy.

5. Deduce that f is C1 structurally stable.
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5. Let v : R3 → R3 be a linear vector field defined by

v(x , y , z) = (v1 x , v2 y , v3 z)

for constants v1 , v2 , v3 ∈ R.

1. Calculate the position of a point x0 , y0 , z0 after time t, under the flow induced by

the vector field v.

2. Let D3 = [−1 , 1]3 be a cube containing the origin. Suppose that

v1 > 0, v2 < 0, v3 < 0.

Calculate the time it takes for a point on the top of the cube {z = 1} to reach one
of the sides {x = ±1}. Explain why this cannot hold for every point in the cube with
{z = 1}.

3. Define the general notion of a Poincaré map of a flow between two cross sections.

4. Calculate the Poincaré map between the top of the cube {z = 1} and the sides
{x = ±1}.
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