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Calculators may not be used.

You should assume throughout that dX(t) is a Brownian motion with

E (dX(t)) = 0 ,

E
(
(dX(t))2

)
= dt .
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1. (a) Derive the partial differential equation

∂V

∂t
+
1

2
b2
∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0

for the “fair” price of an option based on a security S which satisfies the stochastic

differential equation

dS = a(S, t)dt+ b(S, t)dX ,

where a and b are given functions of S and t, r is the risk free interest rate and D is the

continuous dividend yield.

(b) A contract is agreed where the buyer will obtain the asset S at some time T in the

future. Use the above equation to determine a fair price that the buyer should pay.

2. (a) A binomial model assumes that an equity which initially has value S can during a time

step δt either rise to u1S or fall to v1S, each with probability
1
2
. Beginning with a value

S0 at time t = 0, construct a binomial tree up to time 2δt.

(b) Assuming the above binomial model, construct a portfolio at time t consisting of one

option and a short position in a quantity 4 of the underlying. Thus at time t this
portfolio has value

π = V −4S,

where the value of V is to be determined. Given a risk free interest rate r (assumed

constant) use a no-arbitrage argument to determine the value V (s, t) of the option at

time t in terms of option values at time step t+ δt .

(c) Hence construct the price of a European Binary Call option at times t = 0 and t = δt

and at values of S in the binomial tree given an exercise time of T = 2δt and a payoff

V (S, T ) = H(S − E),

where

v21S0 < E < u1v1S0

and assuming a zero interest rate (r = 0).

(d) Construct also the price for a Binary European Put, payoff

V (S, T ) = H(E − S)

with E = u1v1S0 and r = 0, at the same times and S values as the call, and check

whether a form of Put-Call parity is true for these solutions.
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3. (a) Find the solution of the stochastic differential equation

dS = μSdt+ σSdX

where μ and σ are constants and

X(0) = 0, S(0) = S0 .

(b) Evaluate ∫ 1

0

X2(τ)dX(τ) +

∫ 1

0

X(τ)dτ

when X(0) = 0 .

(c) Solve

dS = μ(S + 1)dt+ σ(S + 1)dX ,

where μ, σ are constants and

X(0) = 0, S(0) = S0 .

(d) If S satisfies the stochastic differential equation given in (a) above, derive the

corresponding equation for

F = S3 .
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4. A European average strike call option has payoff

max

(

S −
1

T

∫ T

0

S(τ) dτ, 0

)

at time t = T .

(a) Defining

I(t) =

∫ t

0

S(τ)dτ

and

R(t) =
S(t)

∫ t
0
S(τ)dτ

=
S(t)

I(t)
,

derive equations for dI in terms of S(t) and dt and for dR in terms of dS and dt, with

coefficients involving I and R.

(b) In terms of I and R the payoff for the above option equals

I max

(

R−
1

T
, 0

)

at t = T .

The asset S follows the stochastic differential equation

dS = μSdt+ σSdX .

Writing the option value V as

V (S,R, t) = IW (R, t),

use the usual Black-Scholes hedging argument to deduce a partial differential equation

for W (R, t) of the form

∂W

∂t
+
1

2
σ2R2

∂2W

∂R2
+ a(r, R)

∂W

∂R
+ b(r, R)W = 0,

and determine the functions a(r, R) and b(r, R). You may use an alternative argument

beginning with V (S, I, t) if you prefer.
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5. The interest rate r is assumed to be satisfied by a stochastic differential equation

dr = σ(t)dX .

(a) By hedging with a bond of a different maturity, derive the bond pricing equation

∂V

∂t
+
1

2
σ2(t)

∂2V

∂r2
− λ
∂V

∂r
− rV = 0, (1)

where λ(r, t) is an arbitrary function.

(b) Assuming that λ is a function of t only, and that a bond has payoff at maturity t = T

of one unit, i.e.

V (r, T ) = 1 ,

find a solution of (1) of the form

V (r, t) = exp{A(t) + B(t)r},

where A(t) can be written

A(t) = −
∫ T

t

[
λ(t′)(t′ − T ) + α(t′)(t′ − T )2

]
dt′

and determine the function α(t′) .

(c) If at time t0 bond prices are given for a continuous range of maturities, T , so that

V (r, t0;T ) is known as a function of T , determine λ(T ) in terms of
∂2

∂T 2
(lnV (r, t0;T )).
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