Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A22/M4A22

Mathematical Finance

Date: Wednesday, 24th May 2006 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

You should assume throughout that $d X(t)$ is a Brownian motion with

$$
\begin{gathered}
E(d X(t))=0 \\
E\left((d X(t))^{2}\right)=d t
\end{gathered}
$$

1. (a) Derive the partial differential equation

$$
\frac{\partial V}{\partial t}+\frac{1}{2} b^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-D) S \frac{\partial V}{\partial S}-r V=0
$$

for the "fair" price of an option based on a security S which satisfies the stochastic differential equation

$$
d S=a(S, t) d t+b(S, t) d X
$$

where a and b are given functions of S and t, r is the risk free interest rate and D is the continuous dividend yield.
(b) A contract is agreed where the buyer will obtain the asset S at some time T in the future. Use the above equation to determine a fair price that the buyer should pay.
2. (a) A binomial model assumes that an equity which initially has value S can during a time step δt either rise to $u_{1} S$ or fall to $v_{1} S$, each with probability $\frac{1}{2}$. Beginning with a value S_{0} at time $t=0$, construct a binomial tree up to time $2 \delta t$.
(b) Assuming the above binomial model, construct a portfolio at time t consisting of one option and a short position in a quantity \triangle of the underlying. Thus at time t this portfolio has value

$$
\pi=V-\triangle S
$$

where the value of V is to be determined. Given a risk free interest rate r (assumed constant) use a no-arbitrage argument to determine the value $V(s, t)$ of the option at time t in terms of option values at time step $t+\delta t$.
(c) Hence construct the price of a European Binary Call option at times $t=0$ and $t=\delta t$ and at values of S in the binomial tree given an exercise time of $T=2 \delta t$ and a payoff

$$
V(S, T)=H(S-E),
$$

where

$$
v_{1}^{2} S_{0}<E<u_{1} v_{1} S_{0}
$$

and assuming a zero interest rate $(r=0)$.
(d) Construct also the price for a Binary European Put, payoff

$$
V(S, T)=H(E-S)
$$

with $E=u_{1} v_{1} S_{0}$ and $r=0$, at the same times and S values as the call, and check whether a form of Put-Call parity is true for these solutions.
3. (a) Find the solution of the stochastic differential equation

$$
d S=\mu S d t+\sigma S d X
$$

where μ and σ are constants and

$$
X(0)=0, \quad S(0)=S_{0}
$$

(b) Evaluate

$$
\int_{0}^{1} X^{2}(\tau) d X(\tau)+\int_{0}^{1} X(\tau) d \tau
$$

when $X(0)=0$.
(c) Solve

$$
d S=\mu(S+1) d t+\sigma(S+1) d X
$$

where μ, σ are constants and

$$
X(0)=0, \quad S(0)=S_{0}
$$

(d) If S satisfies the stochastic differential equation given in (a) above, derive the corresponding equation for

$$
F=S^{3}
$$

4. A European average strike call option has payoff

$$
\max \left(S-\frac{1}{T} \int_{0}^{T} S(\tau) d \tau, 0\right)
$$

at time $t=T$.
(a) Defining

$$
I(t)=\int_{0}^{t} S(\tau) d \tau
$$

and

$$
R(t)=\frac{S(t)}{\int_{0}^{t} S(\tau) d \tau}=\frac{S(t)}{I(t)},
$$

derive equations for $d I$ in terms of $S(t)$ and $d t$ and for $d R$ in terms of $d S$ and $d t$, with coefficients involving I and R.
(b) In terms of I and R the payoff for the above option equals

$$
I \max \left(R-\frac{1}{T}, 0\right) \quad \text { at } t=T .
$$

The asset S follows the stochastic differential equation

$$
d S=\mu S d t+\sigma S d X
$$

Writing the option value V as

$$
V(S, R, t)=I W(R, t)
$$

use the usual Black-Scholes hedging argument to deduce a partial differential equation for $W(R, t)$ of the form

$$
\frac{\partial W}{\partial t}+\frac{1}{2} \sigma^{2} R^{2} \frac{\partial^{2} W}{\partial R^{2}}+a(r, R) \frac{\partial W}{\partial R}+b(r, R) W=0
$$

and determine the functions $a(r, R)$ and $b(r, R)$. You may use an alternative argument beginning with $V(S, I, t)$ if you prefer.
5. The interest rate r is assumed to be satisfied by a stochastic differential equation

$$
d r=\sigma(t) d X
$$

(a) By hedging with a bond of a different maturity, derive the bond pricing equation

$$
\begin{equation*}
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2}(t) \frac{\partial^{2} V}{\partial r^{2}}-\lambda \frac{\partial V}{\partial r}-r V=0 \tag{1}
\end{equation*}
$$

where $\lambda(r, t)$ is an arbitrary function.
(b) Assuming that λ is a function of t only, and that a bond has payoff at maturity $t=T$ of one unit, i.e.

$$
V(r, T)=1
$$

find a solution of (1) of the form

$$
V(r, t)=\exp \{A(t)+B(t) r\}
$$

where $A(t)$ can be written

$$
A(t)=-\int_{t}^{T}\left[\lambda\left(t^{\prime}\right)\left(t^{\prime}-T\right)+\alpha\left(t^{\prime}\right)\left(t^{\prime}-T\right)^{2}\right] d t^{\prime}
$$

and determine the function $\alpha\left(t^{\prime}\right)$.
(c) If at time t_{0} bond prices are given for a continuous range of maturities, T, so that $V\left(r, t_{0} ; T\right)$ is known as a function of T, determine $\lambda(T)$ in terms of $\frac{\partial^{2}}{\partial T^{2}}\left(\ln V\left(r, t_{0} ; T\right)\right)$.

