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1. A Vanilla European call option has ’fair’ price Vc(s, t; E, T ) and a Vanilla European Put

option Vp(s, t; K,T ).

Define the contracts and pay offs of these two options.

A contract P, (s, t) has at time T a pay off of the following form:-

P1(S, T )






= E1 − S 0 < S < E1 ,

= 0 E1 < S < E2 ,

= S − E2 E2 < S <∞ .

Decompose this contract into one involving Vanilla Calls and Puts and hence price P1(s, t).

How would one price this contract at time t if the only Option available in the market place

was a Vanilla European Call?

Use similar arguments to price the contract P2(s, t) where

P2(s, T ) =






E1 − s+ A 0 < s < E1 ,

A E1 < s < E2 ,

s− E2 + A E2 < s <∞ .

(The interest rate r is constant and the asset S is traded).
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2. (i) If in a time step δt an asset S either rises to a price S+ or falls to a price S− and an

option price V changes to a price V + or V − as the corresponding asset price changes,

then show by constructing a risk free portfolio V −ΔS that

Δ =
V + − V −

S+ − S−
,

and deduce a formula for V (s, t) given that the spot interest rate is zero.

Show that this formula can be expressed in the form

V ≡
a(s− s−)
(s+ − s−)

+
b(s+ − s−)
(s+ − s−)

and find a and b.

(ii) The Binomial tree for an asset S is as shown below

140

130

120 120

110 110

100 100 100

90 90

80 80

70

60

t = 0 T
4

T
2

3T
4

T

(i.e. the asset rises or falls by an amount 10).

(iii) Using the formula deduced in part (i), construct a tree corresponding to that in part (ii)

above, for the option price V for..

(a) A European Binary Put option with payoff H(110− s) at time T (H is the Heaviside step
function) and

(b) What would be the price at t = 0 of a European Binary Call option with the same strike

as (a).

(c) Price (a) when there is a Barrier such that V (110, t) = 0.
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3. (i) Use Ito’s Lemma to deduce the following formula for stochastic differential equations

and stochastic (Ito) integrals

∫ t

0

∂F

∂X
dX(s) = F (X(t), t)− F (X(0), 0)

−
∫ t

0

(
∂F

∂s
+
1

2

∂2F

∂X2

)

ds

for a function F (X(s), s) where dX(s) is an increment of a Brownian motion.

(ii) Show that F = cos(aX(t) + b) is a solution of the stochastic differential equation

dF = −a
√
(1− F 2)dX

−a2F
2
dt

where a and b are constants.

(iii) Solve the stochastic differential equation

dF = −
1

2
a2F dt+ a

√
(1− F 2) dX

with F (X(0)) = 0, X(0) = 0

(iv) If

dF = μ(F + 1) dt+ σ(F + 1) dX

find F if X(0) = 0 and F (0) = 0.
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4. (i) Given that an asset S satisfies the stochastic differential equation

dS = μS dt+ σSdX

find the stochastic differential equation satisfied by

x = lnS

Hence deduce Ito’s lemma for V (x, t)

dV =

(
∂V

∂t
+
1

2
σ2
∂2V

∂x2

)

dt+
∂V

∂x
dx.

and derive a partial differential equation for V (x, t) by constructing a risk free portfolio

by heading with the asset S and using the principle of no-arbitrage.

(ii) A shout option has pay-off Max(S − E, 0) at expiry (t = T ).

The buyer is allowed one shout before expiry. If he shouts at time t1 < T where

S(t1) > E he receives S(t1) − E at t1 and an additional Max(S(T ) − S(t1), 0) at
time T . His pay off if he shouts is thus

V2 = (S(t1)− E) e
r(T−t1) +Max (S(T )− S(t1), 0)

and if he doesn’t shout it is

V1 = max (S(T )− E, 0)

(r is the risk free interest rate).

If the share price rises above E before expiry, should the buyer shout? Give arguments

to justify your answer.
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5. The interest rate r is assumed to be governed by a stochastic differential equation of the

form

dr = u(r, t) dt+ w(r, t) dX

By hedging with a bond of different maturity derive the bond pricing equation for a zero

coupon bond
∂V

∂t
+
1

2
w2
∂2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0

where λ(r, t) is an arbitrary function.

Given a model where both u and λ are zero, calculate the price V (r, t) for a bond paying

unity at time T for the following cases:-

(i) w = w0 constant for all time.

(ii) w = −w0(t−T )
T

(iii) w = −2w0(t−T )
T
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