1. Consider the population dynamics of species $x \geq 0$:

$$
\dot{x}=r x-x(1-x)
$$

(a) Sketch the vector fields that occur for $r=0$ and $r=1$.
(b) Show that a saddle-node bifurcation occurs at a critical value of r, to be determined.
(c) Sketch the bifurcation diagram of fixed points x^{*} versus r.
(d) Analytically solve this ODE. Determine for what value of t the solution blows up (you may assume $r>1$).
2. Consider the predator-prey system

$$
\dot{x}=x[x(1-x)-y] \quad \dot{y}=y(x-a)
$$

where $x \geq 0$ is the dimensionless population of the prey, $y \geq 0$ is the dimensionless population of the predator, and $1>a>0$ is a control parameter.
(a) Sketch the nullclines in the first quadrant, $x, y \geq 0$. Show that the fixed points are $(0,0),(1,0)$ and $\left(a, a-a^{2}\right)$, and classify the fixed point $(1,0)$.
(b) Define a supercritical Hopf bifurcation for a 1-parameter family of systems of 2 first-order ODEs. Assuming a supercritical Hopf bifurcation takes place at the parameter value a_{c}, sketch the topologically different phase portraits for $a<a_{c}, a=a_{c}$ and $a>a_{c}$, near the equilibrium point.
(c) For the fixed point $\left(a, a-a^{2}\right)$, calculate the Jacobian and its eigenvalues. Hence determine the unique value of $a \in(0,1), a_{c}$, where a Hopf bifurcation could occur.
(d) Estimate the frequency of limit cycle oscillations for a near the bifurcation.
3. Let J be the molecular bond graph below left, and K the molecular bond graph below right.
(a) Determine whether J and K have the same abstract graphs or not, and also whether there is a homeomorphism from the embedded graph J to the embedded graph K. (You need only to show the deformation, not prove continuity, etc. directly.)
(b) Show that if an embedded graph G is topologically achiral in \mathbb{R}^{3} then it is topologically achiral in S^{3}.
(b) Let h be a homeomorphism from \mathbb{R}^{3} to itself or from S^{3} to itself. If h is isotopic to a reflection map, then h is an orientation-reversing, or o-r homeomorphism. If h is isotopic to the identity map, it is an orientation-preserving or o-p homeomorphism. Every homeomorphism of \mathbb{R}^{3} or S^{3} is either o-r or o-p.
Using this, one could alternatively define a molecular bond graph $G \subseteq \mathbb{R}^{3}$ to be topologically achiral if there exists an o-r homeomorphism of $\left(\mathbb{R}^{3}, G\right)$ taking G to itself. Prove that this definition of topological achirality is equivalent to the standard one.
(You may assume that the composition of an o-p homeomorphism with an or homeomorphism is an o-r homeomorphism, while the composition of 2 o-r homeomorphisms is an o-p homeomorphism.)
4. A discrete model for population growth is given by

$$
x_{n+1}=H_{r, b}\left(x_{n}\right)=r x_{n}\left(1+x_{n}\right)^{-b}
$$

for $r>0$ and $b>1$. For $x>0, H_{r, b}>0$ so, unlike the logistic model, the iterates of an initial condition $x_{0}>0$ never become negative.
(a) Assume $r>1$. What is the non-zero fixed point, x^{*} ? If $1<b<2$, what type of fixed point is x^{*} ?
(b) Show that there is a unique fixed point for $r<1$ and prove it is globally attracting.
(c) Determine the limiting behaviour of $H_{r, b}$ and $\frac{H_{r, b}}{x}$ as $x \rightarrow \infty$. Then find the unique critical point x_{c} where $H_{r, b}^{\prime}=0$.
(d) For a given function $f(x)$, the Schwarzian derivative is given by

$$
S_{f}(x)=\frac{f^{\prime \prime \prime}(x) f^{\prime}(x)-3 / 2 f^{\prime \prime}(x)^{2}}{f^{\prime}(x)^{2}}
$$

It can be proven that if the Schwarzian derivative is negative and there exists only 1 critical point, then there is a unique periodic sink. Show that there is only 1 periodic sink $\forall b \geq 2$, and interpret this biologically.
(You may assume that the basin of attraction of x^{*} is all $x>0$.)
5. During the fundamental biochemical process of glycolysis, living cells obtain energy by breaking down sugar. It can often proceed in an oscillatory fashion. In dimensionless form, a simple model of the oscillations is:

$$
\begin{gathered}
\dot{x}=-x+a y+x^{2} y \\
\dot{y}=b-a y-x^{2} y
\end{gathered}
$$

where x and y are the concentrations of ADP (adenosine diphosphate) and F6P (fructose-6phosphate) and $a, b>0$ are kinetic parameters.
(a) Sketch the nullclines (roughly), and determine the direction of the trajectories on these nullclines.
(b) Consider the trapezoidal region R with edges the x-axis, the y-axis from 0 to b / a, the horizontal line joining $(0, b / a)$ to $(b, b / a)$, and the diagonal line of slope -1 extending from the point $(b, b / a)$ to the y-nullcline. Determine the direction of the trajectories on the 4 edges of this region. (Hint: For the diagonal line, consider $\dot{y} / \dot{x}=d y / d x$ for large x, and look at $\dot{x}-(-\dot{y})$ to determine when $d y / d x$ is more negative than $-1=$ slope of the diagonal line.)
(c) Determine a and b in terms of the trace, when the fixed point inside R is a repeller.
(d) State the Poincaré-Bendixson theorem, and hence show there is a closed orbit in R.

