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1. Consider the model
∂u

∂t
= r

(
1−
u

K

)
u−

u

1 + u
+
∂2u

∂x2

for a population subject to predation and diffusion, where r > 0, K > 0.

(i) Find the steady state equation, and compute the three constant steady states u = ui,

i = 1, 2, 3. Determine condition(s) on r in terms of K such that the constant steady

states are real, distinct and positive (including 0), and choose the indices such that

u1 < u2 < u3. Show that these conditions give an open interval of admissible r for

any K 6= 1. Assuming these conditions hold, sketch a phase portrait for the steady
state equation in the (u, v)-plane, where v = ux. (Hint: use that the equation is

Hamiltonian.) In case there are multiple saddles, you do not have to determine the order

of their level sets.

(ii) Derive a suitable system of ODE’s to describe wave solutions travelling with constant

speed c (c > 0). Take parameter values K = 4, r = 16/21 and analyze the stability of

the three equilibrium points. Sketch a phase portrait and show that there exists a wave

solution with limx→−∞ u(x, t) = u1 and limx→+∞ u(x, t) = u2, and a wave solution with

limx→−∞ u(x, t) = u3 and limx→+∞ u(x, t) = u2.

2. Consider the enzyme reaction

A+B + E

k2
�
k1

C →
k3

P + E,

where E is the enzyme, and P is the final product.

(i) Denote the concentrations of the chemicals involved by a(t), b(t), e(t), c(t), p(t) and

use the law of Mass Action to derive a system of ODE’s describing this equation (in a

spatially independent setting). a(0) = a0, b(0) = b0, c(0) = 0, e(0) = e0 and p(0) = 0.

Show that e(t) + c(t) and a(t) − b(t) are constant and equal to e0 and d = a0 − b0,
respectively. Use this to reduce the system to a system of (two) ODE’s for b and c.

(ii) Assume that e0 � b0, and apply a rescaling t 7→ τ , b 7→ u, c 7→ v to get the fast system

1

ε

du

dτ
= αv − (u+ δ)u(1− v) ,

dv

dτ
= (u+ δ)u(1− v)− (α + β)v

where α = k2/(k1b
2
0), β = k3/(k1b

2
0), δ = d/b0, and ε = e0/b0. Rescale time once more

to obtain a slow system. Determine approximate solutions for both systems, and give

the timescales on which these solutions hold. Use this to sketch an approximate solution

in the u, v plane.
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3. Consider the following system that potentially exhibits pattern formation via the Turing

mechanism:

ut = u
2 − uv +∇2u , vt = −v + 3uv − 2v

2 + d∇2v.

where d > 0 is a parameter, u = u(r, t) and v = v(r, t) are the concentrations of the

chemicals involved, and a two-colour pattern arises depending on the concentration of u. We

take r = (x, y) on some domain D ⊂ R2, with ∇u ∙ n = ∇v ∙ n = 0 on the boundary of D.
Here n is normal to the boundary.

(i) Compute the equilibria of the spatially independent system in u ≥ 0, v ≥ 0, and
determine the equilibrium (u0, v0) that is linearly stable under spatially independent

perturbations.

(ii) Derive a condition on d such that the system is linearly unstable at (u0, v0) under spatially

dependent perturbations. Please note that just stating the condition will not suffice, you

need to present a derivation.

4. We consider an SIR model where the infected class can either return to the susceptible class,

or move on to the removed class:

dS̄

dt̄
= −aS̄Ī + bĪ ,

dĪ

dt̄
= aS̄Ī − bĪ − cĪ ,

dR̄

dt̄
= cĪ,

with S̄(0) = S̄0 > 0, ˉI(0) = Ī0 ≥ 0, R̄(0) = 0, and a, b, c are strictly positive parameters.

(i) Apply a suitable rescaling to S̄, Ī, R̄ and/or t̄ to obtain the system

dS

dt
= −SI + βI ,

dI

dt
= SI − βI − γI ,

dR

dt
= γI,

with S(0) = 1, I(0) = I0 and R(0) = 0. Express β, γ and I0 in terms of the original

parameters and show that the total population size is constant.

(ii) Compute the equilibria and determine their stability. Sketch a phase portrait in the

(S, I) plane. Determine the regions in the phase plane where S is monotone (increasing

or decreasing) along solutions. Assuming that S(0) = 1 is in one of these regions, derive

an equation for dI
dS
and use it to obtain an equation for S∞ = limt→+∞ S(t) (you do not

have to solve this equation).

M3A21/M4A21 Mathematical Biology (2006) Page 3 of 4



5. Consider the equation
du(t)

dt
= −δu(t)− (1− δ)u(t− T ),

where T ≥ 0 is the delay time, and δ ∈ [0, 1).

(i) What is the stability of the equilibrium u = 0 for T = 0? Show that there exists a

T∗ = T∗(δ) > 0 where the stability changes if and only if δ < 1/2. Show that T∗ → +∞
as δ converges to 1

2
from below. (Hint: Try solutions of the type eλt.)

(ii) Now take δ = 0. Let T = T∗(0) + ε for ε positive and small. Let u(t) = e
λt be

a solution of the delay equation of the form λ = μ + iω with μ = μ1ε + O(ε
2) and

ω = ω0 + ω1ε + O(ε
2). Compute μ1, ω0 and ω1. Does this solution show instability of

the equilibrium u = 0 for T (slightly) larger than T∗(0)? Explain your answer.
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