Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A21/M4A21

Mathematical Biology

Date: Tuesday, 23rd May 2006
Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Consider the model

$$
\frac{\partial u}{\partial t}=r\left(1-\frac{u}{K}\right) u-\frac{u}{1+u}+\frac{\partial^{2} u}{\partial x^{2}}
$$

for a population subject to predation and diffusion, where $r>0, K>0$.
(i) Find the steady state equation, and compute the three constant steady states $u=u_{i}$, $i=1,2,3$. Determine condition(s) on r in terms of K such that the constant steady states are real, distinct and positive (including 0), and choose the indices such that $u_{1}<u_{2}<u_{3}$. Show that these conditions give an open interval of admissible r for any $K \neq 1$. Assuming these conditions hold, sketch a phase portrait for the steady state equation in the (u, v)-plane, where $v=u_{x}$. (Hint: use that the equation is Hamiltonian.) In case there are multiple saddles, you do not have to determine the order of their level sets.
(ii) Derive a suitable system of ODE's to describe wave solutions travelling with constant speed $c(c>0)$. Take parameter values $K=4, r=16 / 21$ and analyze the stability of the three equilibrium points. Sketch a phase portrait and show that there exists a wave solution with $\lim _{x \rightarrow-\infty} u(x, t)=u_{1}$ and $\lim _{x \rightarrow+\infty} u(x, t)=u_{2}$, and a wave solution with $\lim _{x \rightarrow-\infty} u(x, t)=u_{3}$ and $\lim _{x \rightarrow+\infty} u(x, t)=u_{2}$.
2. Consider the enzyme reaction

$$
A+B+E \underset{k_{1}}{\stackrel{k_{2}}{\leftrightarrows}} C \underset{k_{3}}{\rightarrow} P+E,
$$

where E is the enzyme, and P is the final product.
(i) Denote the concentrations of the chemicals involved by $a(t), b(t), e(t), c(t), p(t)$ and use the law of Mass Action to derive a system of ODE's describing this equation (in a spatially independent setting). $a(0)=a_{0}, b(0)=b_{0}, c(0)=0, e(0)=e_{0}$ and $p(0)=0$. Show that $e(t)+c(t)$ and $a(t)-b(t)$ are constant and equal to e_{0} and $d=a_{0}-b_{0}$, respectively. Use this to reduce the system to a system of (two) ODE's for b and c.
(ii) Assume that $e_{0} \ll b_{0}$, and apply a rescaling $t \mapsto \tau, b \mapsto u, c \mapsto v$ to get the fast system

$$
\frac{1}{\epsilon} \frac{\mathrm{~d} u}{\mathrm{~d} \tau}=\alpha v-(u+\delta) u(1-v), \frac{\mathrm{d} v}{\mathrm{~d} \tau}=(u+\delta) u(1-v)-(\alpha+\beta) v
$$

where $\alpha=k_{2} /\left(k_{1} b_{0}^{2}\right), \beta=k_{3} /\left(k_{1} b_{0}^{2}\right), \delta=d / b_{0}$, and $\epsilon=e_{0} / b_{0}$. Rescale time once more to obtain a slow system. Determine approximate solutions for both systems, and give the timescales on which these solutions hold. Use this to sketch an approximate solution in the u, v plane.
3. Consider the following system that potentially exhibits pattern formation via the Turing mechanism:

$$
u_{t}=u^{2}-u v+\nabla^{2} u, v_{t}=-v+3 u v-2 v^{2}+d \nabla^{2} v .
$$

where $d>0$ is a parameter, $u=u(r, t)$ and $v=v(r, t)$ are the concentrations of the chemicals involved, and a two-colour pattern arises depending on the concentration of u. We take $r=(x, y)$ on some domain $D \subset \mathbb{R}^{2}$, with $\nabla u \cdot n=\nabla v \cdot n=0$ on the boundary of D. Here n is normal to the boundary.
(i) Compute the equilibria of the spatially independent system in $u \geq 0, v \geq 0$, and determine the equilibrium $\left(u_{0}, v_{0}\right)$ that is linearly stable under spatially independent perturbations.
(ii) Derive a condition on d such that the system is linearly unstable at $\left(u_{0}, v_{0}\right)$ under spatially dependent perturbations. Please note that just stating the condition will not suffice, you need to present a derivation.
4. We consider an SIR model where the infected class can either return to the susceptible class, or move on to the removed class:

$$
\frac{\mathrm{d} \bar{S}}{\mathrm{~d} \bar{t}}=-a \bar{S} \bar{I}+b \bar{I}, \frac{\mathrm{~d} \bar{I}}{\mathrm{~d} \bar{t}}=a \bar{S} \bar{I}-b \bar{I}-c \bar{I}, \frac{\mathrm{~d} \bar{R}}{\mathrm{~d} \bar{t}}=c \bar{I}
$$

with $\bar{S}(0)=\bar{S}_{0}>0, I \overline{(0)}=\bar{I}_{0} \geq 0, \bar{R}(0)=0$, and a, b, c are strictly positive parameters.
(i) Apply a suitable rescaling to $\bar{S}, \bar{I}, \bar{R}$ and/or \bar{t} to obtain the system

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=-S I+\beta I, \frac{\mathrm{~d} I}{\mathrm{~d} t}=S I-\beta I-\gamma I, \frac{\mathrm{~d} R}{\mathrm{~d} t}=\gamma I
$$

with $S(0)=1, I(0)=I_{0}$ and $R(0)=0$. Express β, γ and I_{0} in terms of the original parameters and show that the total population size is constant.
(ii) Compute the equilibria and determine their stability. Sketch a phase portrait in the (S, I) plane. Determine the regions in the phase plane where S is monotone (increasing or decreasing) along solutions. Assuming that $S(0)=1$ is in one of these regions, derive an equation for $\frac{\mathrm{d} I}{\mathrm{~d} S}$ and use it to obtain an equation for $S_{\infty}=\lim _{t \rightarrow+\infty} S(t)$ (you do not have to solve this equation).
5. Consider the equation

$$
\frac{\mathrm{d} u(t)}{\mathrm{d} t}=-\delta u(t)-(1-\delta) u(t-T)
$$

where $T \geq 0$ is the delay time, and $\delta \in[0,1)$.
(i) What is the stability of the equilibrium $u=0$ for $T=0$? Show that there exists a $T_{*}=T_{*}(\delta)>0$ where the stability changes if and only if $\delta<1 / 2$. Show that $T_{*} \rightarrow+\infty$ as δ converges to $\frac{1}{2}$ from below. (Hint: Try solutions of the type $e^{\lambda t}$.)
(ii) Now take $\delta=0$. Let $T=T_{*}(0)+\epsilon$ for ϵ positive and small. Let $u(t)=e^{\lambda t}$ be a solution of the delay equation of the form $\lambda=\mu+i \omega$ with $\mu=\mu_{1} \epsilon+O\left(\epsilon^{2}\right)$ and $\omega=\omega_{0}+\omega_{1} \epsilon+O\left(\epsilon^{2}\right)$. Compute μ_{1}, ω_{0} and ω_{1}. Does this solution show instability of the equilibrium $u=0$ for T (slightly) larger than $T_{*}(0)$? Explain your answer.

