1. The transformation in \mathbb{R}^3 from 3D Cartesian coordinates (x,y,z) to spherical coordinates (r,θ,ϕ) is given by the well-known formula

$$(x, y, z) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$$

(a) Compute the 3-form $d^3x = dx \wedge dy \wedge dz$ in terms of (r, θ, ϕ) and $(dr, d\theta, d\phi)$.

In general, contraction of a vector field with a 3-form produces a 2-form $X \perp d^3x = \mathbf{X} \cdot \hat{\mathbf{n}} dS$, where dS is the surface area element with unit normal vector $\hat{\mathbf{n}}$.

(b) Compute the 2-form $\beta = X \perp d^3x$ obtained by substituting the vector field,

$$X = \mathbf{x} \cdot \nabla = x\partial_x + y\partial_y + z\partial_z = r\partial_r$$
,

into the 3-form d^3x . Write the expression in both Cartesian and spherical coordinates.

(c) Is the 2-form β in (b) closed? Is it exact? Determine this by computing the 3-form arising from its exterior derivative, as

$$d\beta = d(X \perp d^3x)$$

Express this 3-form in both Cartesian and spherical coordinates.

- (d) Evaluate β in (c) on the spherical level surface r=1. How is the result related to the geometry of a sphere? Is the 2-form β evaluated at r=1 closed? Is it exact?
- 2. By using Cartan's formula, $\pounds_X \alpha = X \mathrel{\reflectbox{\perp}} d\alpha + d(X \mathrel{\reflectbox{\perp}} \alpha)$ and the two defining properties

$$X \perp (\alpha \wedge \beta) = (X \perp \alpha) \wedge \beta + (-1)^k \alpha \wedge (X \perp \beta),$$

$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge d\beta,$$

prove the following three identities for Lie derivatives of a k-form α :

- (a) $\pounds_{fX}\alpha = f\pounds_X\alpha + df \wedge (X \perp \alpha)$
- (b) $\pounds_X d\alpha = d(\pounds_X \alpha)$
- (c) $\pounds_X(\alpha \wedge \beta) = (\pounds_X \alpha) \wedge \beta + \alpha \wedge \pounds_X \beta$

3. The canonical Poisson brackets are $\{q_k, p_m\} = \delta_{km}$ when expressed in phase space coordinates $(\mathbf{q}, \mathbf{p}) \in T^*\mathbb{R}^3 \simeq \mathbb{R}^3 \times \mathbb{R}^3$.

Given these canonical Poisson brackets, consider the following function for any ${\boldsymbol \xi} \in \mathbb{R}^3$,

$$J^{\xi} = \boldsymbol{\xi} \cdot (\mathbf{p} \times \mathbf{q})$$
.

- (a) Compute the Poisson brackets $\{J^{\xi}, \mathbf{q}\}$ and $\{J^{\xi}, \mathbf{p}\}$ in vector form. Interpret these relations geometrically.
- (b) Find the Hamiltonian vector field $X_{J^{\xi}}$ for $J^{\xi} = \boldsymbol{\xi} \cdot (\mathbf{p} \times \mathbf{q})$.
- (c) Find the functions of q and p that are left invariant by this vector field.
- (d) Explain geometrically why these quantities are left invariant.
- (e) Compute the evolution of Hamilton's canonical equations for the Hamiltonian

$$J^{\xi} = \xi \cdot (\mathbf{p} \times \mathbf{q}) = p_1 q_2 - p_2 q_1$$
, when $\xi = (0, 0, 1)^T$.

4. (a) Compute the Poisson brackets among

$$J_l = \epsilon_{lmn} p_m q_n$$
 for $l, m, n = 1, 2, 3,$

given the canonical Poisson brackets $\{q_k, p_m\} = \delta_{km}$.

- (b) (i) Do the Poisson brackets $\{J_l, J_m\}$ close among themselves?
 - (ii) Write the Poisson bracket $\{F(\mathbf{J}), H(\mathbf{J})\}$ for the restriction of the dynamics to functions of $\mathbf{J} = (J_1, J_2, J_3)$.
 - (iii) Write in vector notation the dynamical equation $\dot{\mathbf{J}}=\{\mathbf{J},H(\mathbf{J})\}$ for any Hamiltonian function $H(\mathbf{J})$.
 - (iv) Compute the dynamical equation for the Hamiltonian function

$$H(\mathbf{J}) = J^{\xi} = \boldsymbol{\xi} \cdot \mathbf{J}$$

for any vector $\boldsymbol{\xi} \in \mathbb{R}^3$. Interpret the solutions for this flow geometrically.

5. Recall the canonical Poisson bracket relations for oscillator variables on \mathbb{C}^2 ,

$$\{a_j, a_k^*\} = -2i\delta_{jk}$$
 and $\{a_j^*, a_k\} = 2i\delta_{jk}$ where $j, k = 1, 2$

(a) Define the S^1 -invariant quantities

$$R = \frac{n}{2} |a_1|^2 + \frac{m}{2} |a_2|^2$$

$$Z = \frac{n}{2} |a_1|^2 - \frac{m}{2} |a_2|^2$$

$$X + iY = 2a_1^m a_2^{*n}$$

Show that these variables are not independent by verifying that the function

$$C(X, Y, Z, R) = X^{2} + Y^{2} - 4\left(\frac{R+Z}{n}\right)^{m} \left(\frac{R-Z}{m}\right)^{n}$$

vanishes identically.

- (b) Compute the Poisson brackets among R, X, Y and Z in Part (a).
- (c) Use the Poisson brackets in Part (b) to write the Poisson bracket between two functions F and H of (X,Y,Z) as the triple vector product of gradients

$$\{F, H\} = -\nabla C \cdot \nabla F \times \nabla H$$
, so that $\{X, Y\} = -\partial C/\partial Z$, etc

Hint: use C(X, Y, Z, R) = 0 from Part (a).

(d) Explain the geometric meaning of the equation of motion for this Poisson bracket. In particular, what is the orbit in $(X,Y,Z)\in\mathbb{R}^3$ when the Hamiltonian is chosen to be H=Z for a given value of R?