1. The transformation in \mathbb{R}^{3} from 3D Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, ϕ) is given by the well-known formula

$$
(x, y, z)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)
$$

(a) Compute the 3-form $d^{3} x=d x \wedge d y \wedge d z$ in terms of (r, θ, ϕ) and ($\left.d r, d \theta, d \phi\right)$.

In general, contraction of a vector field with a 3-form produces a 2 -form $X\lrcorner d^{3} x=$ $\mathbf{X} \cdot \hat{\mathbf{n}} d S$, where $d S$ is the surface area element with unit normal vector $\hat{\mathbf{n}}$.
(b) Compute the 2-form $\beta=X\lrcorner d^{3} x$ obtained by substituting the vector field,

$$
X=\mathbf{x} \cdot \nabla=x \partial_{x}+y \partial_{y}+z \partial_{z}=r \partial_{r}
$$

into the 3-form $d^{3} x$. Write the expression in both Cartesian and spherical coordinates.
(c) Is the 2-form β in (b) closed? Is it exact? Determine this by computing the 3-form arising from its exterior derivative, as

$$
\left.d \beta=d(X\lrcorner d^{3} x\right)
$$

Express this 3-form in both Cartesian and spherical coordinates.
(d) Evaluate β in (c) on the spherical level surface $r=1$. How is the result related to the geometry of a sphere? Is the 2 -form β evaluated at $r=1$ closed? Is it exact?
2. By using Cartan's formula, $\left.\left.£_{X} \alpha=X\right\lrcorner d \alpha+d(X\lrcorner \alpha\right)$ and the two defining properties

$$
\begin{aligned}
X\lrcorner(\alpha \wedge \beta) & \left.=(X\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(X\lrcorner \beta\right), \\
d(\alpha \wedge \beta) & =(d \alpha) \wedge \beta+(-1)^{k} \alpha \wedge d \beta
\end{aligned}
$$

prove the following three identities for Lie derivatives of a k-form α :
(a) $\left.£_{f X} \alpha=f £_{X} \alpha+d f \wedge(X\lrcorner \alpha\right)$
(b) $£_{X} d \alpha=d\left(£_{X} \alpha\right)$
(c) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge £_{X} \beta$
3. The canonical Poisson brackets are $\left\{q_{k}, p_{m}\right\}=\delta_{k m}$ when expressed in phase space coordinates $(\mathbf{q}, \mathbf{p}) \in T^{*} \mathbb{R}^{3} \simeq \mathbb{R}^{3} \times \mathbb{R}^{3}$.
Given these canonical Poisson brackets, consider the following function for any $\boldsymbol{\xi} \in \mathbb{R}^{3}$,

$$
J^{\xi}=\boldsymbol{\xi} \cdot(\mathbf{p} \times \mathbf{q})
$$

(a) Compute the Poisson brackets $\left\{J^{\xi}, \mathbf{q}\right\}$ and $\left\{J^{\xi}, \mathbf{p}\right\}$ in vector form. Interpret these relations geometrically.
(b) Find the Hamiltonian vector field $X_{J \xi}$ for $J^{\xi}=\boldsymbol{\xi} \cdot(\mathbf{p} \times \mathbf{q})$.
(c) Find the functions of \mathbf{q} and \mathbf{p} that are left invariant by this vector field.
(d) Explain geometrically why these quantities are left invariant.
(e) Compute the evolution of Hamilton's canonical equations for the Hamiltonian

$$
J^{\xi}=\boldsymbol{\xi} \cdot(\mathbf{p} \times \mathbf{q})=p_{1} q_{2}-p_{2} q_{1}, \quad \text { when } \quad \boldsymbol{\xi}=(0,0,1)^{T}
$$

4. (a) Compute the Poisson brackets among

$$
J_{l}=\epsilon_{l m n} p_{m} q_{n} \quad \text { for } \quad l, m, n=1,2,3,
$$

given the canonical Poisson brackets $\left\{q_{k}, p_{m}\right\}=\delta_{k m}$.
(b) (i) Do the Poisson brackets $\left\{J_{l}, J_{m}\right\}$ close among themselves?
(ii) Write the Poisson bracket $\{F(\mathbf{J}), H(\mathbf{J})\}$ for the restriction of the dynamics to functions of $\mathbf{J}=\left(J_{1}, J_{2}, J_{3}\right)$.
(iii) Write in vector notation the dynamical equation $\dot{\mathbf{J}}=\{\mathbf{J}, H(\mathbf{J})\}$ for any Hamiltonian function $H(\mathbf{J})$.
(iv) Compute the dynamical equation for the Hamiltonian function

$$
H(\mathbf{J})=J^{\xi}=\boldsymbol{\xi} \cdot \mathbf{J}
$$

for any vector $\boldsymbol{\xi} \in \mathbb{R}^{3}$. Interpret the solutions for this flow geometrically.
5. Recall the canonical Poisson bracket relations for oscillator variables on \mathbb{C}^{2},

$$
\left\{a_{j}, a_{k}^{*}\right\}=-2 i \delta_{j k} \quad \text { and } \quad\left\{a_{j}^{*}, a_{k}\right\}=2 i \delta_{j k} \quad \text { where } \quad j, k=1,2
$$

(a) Define the S^{1}-invariant quantities

$$
\begin{aligned}
R & =\frac{n}{2}\left|a_{1}\right|^{2}+\frac{m}{2}\left|a_{2}\right|^{2} \\
Z & =\frac{n}{2}\left|a_{1}\right|^{2}-\frac{m}{2}\left|a_{2}\right|^{2} \\
X+i Y & =2 a_{1}^{m} a_{2}^{* n}
\end{aligned}
$$

Show that these variables are not independent by verifying that the function

$$
C(X, Y, Z, R)=X^{2}+Y^{2}-4\left(\frac{R+Z}{n}\right)^{m}\left(\frac{R-Z}{m}\right)^{n}
$$

vanishes identically.
(b) Compute the Poisson brackets among R, X, Y and Z in Part (a).
(c) Use the Poisson brackets in Part (b) to write the Poisson bracket between two functions F and H of (X, Y, Z) as the triple vector product of gradients

$$
\{F, H\}=-\nabla C \cdot \nabla F \times \nabla H, \quad \text { so that } \quad\{X, Y\}=-\partial C / \partial Z, \quad \text { etc. }
$$

Hint: use $C(X, Y, Z, R)=0$ from Part (a).
(d) Explain the geometric meaning of the equation of motion for this Poisson bracket. In particular, what is the orbit in $(X, Y, Z) \in \mathbb{R}^{3}$ when the Hamiltonian is chosen to be $H=Z$ for a given value of R ?

