Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3A16/M4A16

Dynamics II

Date: Wednesday 31st May 2006 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. In coordinates $\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2}$, the Hopf map $\mathbb{C}^{2} / S^{1} \rightarrow S^{3} \rightarrow S^{2}$ is obtained by transforming to the four quadratic S^{1} invariant quantities

$$
\left(a_{1}, a_{2}\right) \rightarrow Q_{j k}=a_{j} a_{k}^{*}, \quad \text { with } \quad j, k=1,2 .
$$

Let the \mathbb{C}^{2} coordinates be expressed as $a_{j}=q_{j}+i p_{j}$ in terms of canonically conjugate variables satisfying the fundamental Poisson brackets $\left\{q_{k}, p_{m}\right\}=\delta_{k m}, k, m=1,2$.
(a) Compute all the Poisson brackets $\left\{a_{j}, a_{k}\right\}$ for $j, k=1,2$.
(b) Is the transformation $(q, p) \rightarrow\left(a, a^{*}\right)$ canonical? Explain why, or why not.
(c) Compute the Poisson brackets among the $Q_{j k}$, with $j, k=1,2$. State and prove whether they close among themselves and whether they are canonical?
(d) Make the linear change of variables,

$$
X_{0}=Q_{11}+Q_{22}, \quad X_{1}+i X_{2}=Q_{12}, \quad X_{3}=Q_{11}-Q_{22}
$$

Compute the Poisson brackets among the $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$.
(e) Express the Poisson bracket $\{F(\mathbf{X}), H(\mathbf{X})\}$ in vector form among functions F and H of $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)$
(f) Show that the quadratic invariants $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ themselves satisfy a quadratic relation. How is this relevant to the Hopf map?
2. Consider canonical coordinates in phase space $(\mathbf{q}, \mathbf{p}) \in T^{*} \mathbb{R}^{3} \simeq \mathbb{R}^{3} \times \mathbb{R}^{3}$ with Poisson brackets $\left\{q_{k}, p_{m}\right\}=\delta_{k m}$.
Given these canonical Poisson brackets, consider the following function for any $\boldsymbol{\xi} \in \mathbb{R}^{3}$,

$$
J^{\xi}=\boldsymbol{\xi} \cdot(\mathbf{p} \times \mathbf{q})
$$

(a) Compute the Poisson brackets $\left\{J^{\xi}, \mathbf{q}\right\}$ and $\left\{J^{\xi}, \mathbf{p}\right\}$ in vector form. Interpret these relations geometrically.
(b) Find the Hamiltonian vector field $X_{J \xi}$ for $J^{\xi}=\boldsymbol{\xi} \cdot(\mathbf{p} \times \mathbf{q})$.
(c) Find the functions of \mathbf{q} and \mathbf{p} that are left invariant by this vector field.
(d) Explain geometrically why these quantities are left invariant.
(e) Compute the evolution of Hamilton's canonical equations for the Hamiltonian

$$
J^{\hat{\mathbf{z}}}=\hat{\mathbf{z}} \cdot(\mathbf{p} \times \mathbf{q})=p_{1} q_{2}-p_{2} q_{1} .
$$

3. (a) Compute the Poisson brackets among

$$
J_{l}=\epsilon_{l m n} p_{m} q_{n} \quad \text { for } \quad l, m, n=1,2,3,
$$

given the canonical Poisson brackets $\left\{q_{k}, p_{m}\right\}=\delta_{k m}$.
(b) (i) Do the Poisson brackets $\left\{J_{l}, J_{m}\right\}$ close among themselves?
(ii) Write the Poisson bracket $\{F(\mathbf{J}), H(\mathbf{J})\}$ for the restriction of the dynamics to functions of $\mathbf{J}=\left(J_{1}, J_{2}, J_{3}\right)$.
(iii) Write in vector notation the dynamical equation $\mathbf{J}=\{\mathbf{J}, H(\mathbf{J})\}$ for any Hamiltonian function $H(\mathbf{J})$.
(iv) Compute the dynamical equation for the Hamiltonian function

$$
H(\mathbf{J})=J^{\xi}=\boldsymbol{\xi} \cdot \mathbf{J}
$$

for any vector $\boldsymbol{\xi} \in \mathbb{R}^{3}$. Interpret the solutions for this flow geometrically.
4. By using Cartan's formula,

$$
\left.\left.£_{X} \alpha=X\right\lrcorner d \alpha+d(X\lrcorner \alpha\right)
$$

prove the following identities for Lie derivatives for a k-form α :
(a) $\left.£_{f X} \alpha=f £_{X} \alpha+d f \wedge(X\lrcorner \alpha\right)$
(b) $£_{X} d \alpha=d\left(£_{X} \alpha\right)$
(c) $\left.\left.£_{X}(X\lrcorner \alpha\right)=X\right\lrcorner £_{X} \alpha$
5. The exterior derivative and wedge product satisfy the following relations in components and in three-dimensional vector notation

$$
\begin{aligned}
d f & =f_{, j} d x^{j}=: \nabla f \cdot d \mathbf{x} \\
d f \wedge d g & =f_{, j} d x^{j} \wedge g_{, k} d x^{k}=:(\nabla f \times \nabla g) \cdot d \mathbf{S}=\operatorname{curl}(f \nabla g) \cdot d \mathbf{S} \\
d f \wedge d g \wedge d h & =f_{, j} d x^{j} \wedge g_{, k} d x^{k} \wedge h_{, l} d x^{l}=:(\nabla f \cdot \nabla g \times \nabla h) d^{3} x
\end{aligned}
$$

Hence write the following expressions in three-dimensional vector notation:
(a) (i) $d^{2} f$
(ii) $d(\mathbf{v} \cdot d \mathbf{x})$
(iii) $d(\boldsymbol{\omega} \cdot d \mathbf{S})$
(iv) $d^{2}(\mathbf{v} \cdot d \mathbf{x})$
(b) (i) $X\lrcorner \mathbf{v} \cdot d \mathbf{x}$
(ii) $X\lrcorner \boldsymbol{\omega} \cdot d \mathbf{S}$
(iii) $X\lrcorner f d^{3} x$
(c) (i) $d(X\lrcorner \mathbf{v} \cdot d \mathbf{x})$
(ii) $d(X\lrcorner \boldsymbol{\omega} \cdot d \mathbf{S})$
(iii) $\left.d(X\lrcorner f d^{3} x\right)$
(d) (i) $£_{X} f$
(ii) $£_{X}(\mathbf{v} \cdot d \mathbf{x})$
(iii) $£_{X}(\boldsymbol{\omega} \cdot d \mathbf{S})$
(iv) $£_{X}\left(f d^{3} x\right)$
(v) $\quad d £_{X}(\boldsymbol{\omega} \cdot d \mathbf{S})$

