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1. Show that the equation of motion of a damped harmonic oscillator

mq̈ + 2μq̇ + kq = 0 (with m, k, μ> 0)

can be derived from a Lagrangian

L = e
2μt
m

[
1

2
mq̇2 −

1

2
kq2
]

.

Construct the Hamiltonian H(q, p, t) and write down Hamilton’s equations.

Show that the Hamiltonian

K(Q,P ) =
P 2

2m
+
kQ2

2
+
μ

m
QP

leads to equations representing the motion of the same damped harmonic oscillator if

Q = qe
μt
m and express P as a function of q, p, t.

In the case of light damping
[
μ < (km)1/2

]
show that, by a rotation of coordinates

(Q,P ) → (Q,P ) in the Q,P phase space, then K = λ1Q
2
+ λ2P

2
and the trajectories

are ellipses.
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2. One point of a uniform circular hoop of mass M , centre O and radius a is fixed and the

hoop is free to move in a vertical plane through the fixed point. A bead of mass m slides

along the hoop and there is no friction

A suitable Lagrangian is

L =Ma2θ̇2 +
1

2
ma2

[
θ̇ + φ̇2 + 2θ̇φ̇ cos(θ − φ)

]

+ Mga cos θ +mga(cos θ + cosφ)

where θ, φ are the angles between the vertical and diameters of the hoop through the fixed

point, the bead respectively.

(i) Write down Lagrange’s equations and, by linearising these, show that the normal

frequencies of smalll vibration about the position of stable equilibrium are

( g
2a

)1/2
and

[(
M +m

M

)
g

a

]1/2
.

Describe the physical behaviour of the system in each normal mode.

(ii) Find the generalised momenta pθ, pφ and show how the Hamiltonian corresponding

to L may be constructed. State how many symmetries and independent constants of

the motion you would expect for the general motion of this system, i.e, for θ, φ not

small. What is the implication of this?
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3. If H(q, p) is the Hamiltonian of a dynamical system and a transformation Q ≡ Q(q, p), P ≡
P (q, p) yields H(q, p) ≡ K(Q,P ), show explicitly that the transformation is canonical,
provided that

∂(Q,P )

∂(q, p)
≡ [Q,P ] =

(
∂Q

∂q

∂P

∂p
−
∂Q

∂p

∂P

∂q

)

= 1.

Then:

(i) Show that the transformation Q = αp
q
, P = βq2 is canonical iff β = − 1

2α
and,

in this case, find K corresponding to the simple harmonic oscillator Hamiltonian

H = p2

2m
+ 1
2
mw2q2.

(ii) Show that the Hamilton equation for Q(t) may then be written

Q̇ = −
Q2

mα
−mαw2.

Find the Hamilton equation for P (t).

(iii) Solve the Hamilton equations in (ii) for Q(t), P (t).

(iv) Hence find the solution for q(t), p(t) for the simple harmonic oscillator when the initial

data is q(0) = q0, p(0) = p0.
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4. Hamilton’s Principal Function S(q, P, t) is the generating function [′F ′2 type] of a canonical

transformation to constant coordinate Q = β and momentum P = α, satisfying

p =
∂S

∂q
, Q =

∂S

∂P

and the Hamilton-Jacobi equation

∂S

∂t
+H

(

q,
∂S

∂q
, t

)

= 0.

A particle of mass m moves along the 1
2
-line q > 0 so that its Hamiltonian is

H =
p2

2m
−
μm

q
+
1

2

λ

q2
,

with λ, μ positive constants.

Show that Hamilton’s Principal Function can have the form

S = (2m)1/2
∫ (

α +
μm

q
−
1

2

λ

q2

)1/2
dq − αt

where α is the energy.

Hence find β and show that the period τ of oscillations between q1 and q2 is

πμ

21/2

(
m

−α

)3/2

where q1q2 = − λ2α and q1 + q2 = −
μm
α
.

[The integral ∫ q2

q1

qdq

[(q2 − q)(q − q1)]1/2
(0 < q1 < q2)

is evaluated easily using e.g. q = q1 cos
2 φ+ q2 sin

2 φ.]
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5. A simple pendulum of length l, performs oscillations on a smooth inclined plane tilted at a

fixed angle β to the horizontal

(i) Show that a suitable Hamiltonian is

H =
p2

2ml2
+mgl sin β(1− cos q) ≡ Energy E,

where q ≡ θ, p = ml2θ̇.

When the oscillations are small, so that cos q ' 1− 1
2
q2, show that each phase plane

trajectory is an ellipse.

(ii) Hence or otherwise show that the action I is given by

I =

(
l

g sin β

) 1
2

E

and find the dependence of q on the angle variable

φ ≡
∂

∂I

∫ q
p dq.

Hence express q and p as functions of time t.

(iii) If the inclination angle β of the plane is changed very slowly compared to the period

of the pendulum, show, using the principle of adiabatic invariance, that the amplitude

of angular oscillation of the pendulum varies as (sin β)−
1
4 and find how its maximum

speed varies.
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