Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M3A13 / M4A13

Waves

Date: Monday, 21st May 2007 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Small displacements $u(x, t)$ of an elastic beam are described by the Lagrangian

$$
\mathcal{L}=\int\left(\frac{1}{2} u_{t}^{2}-\frac{1}{2} u_{x x}^{2}\right) d x
$$

(a) Determine the Euler-Lagrange equation for the action that corresponds to a Lagrangian density of the form $L\left(x, t, u, u_{t}, u_{x}, u_{x x}\right)$, and hence show that the beam obeys the evolution equation

$$
u_{t t}+u_{x x x x}=0 .
$$

(b) By considering the chain rule for partial derivatives in the form

$$
\left.\frac{\partial L}{\partial t}\right|_{x}=\frac{\partial L}{\partial t}+\frac{\partial L}{\partial u} u_{t}+\frac{\partial L}{\partial u_{t}} u_{t t}+\frac{\partial L}{\partial u_{x}} u_{x t}+\frac{\partial L}{\partial u_{x x}} u_{x x t},
$$

and using the Euler-Lagrange equation, or otherwise, derive an energy equation for the beam in the form

$$
\partial_{t} E+\partial_{x} F=0
$$

where E is the energy density and F is the energy flux. Comment briefly on the physical interpretation of the terms in E.
(c) For a plane wave $u=\exp [i(k x-\omega t)]$, calculate the averages of E and F over a wave period. Verify that the average energy propagates with the group velocity.
2. The displacement $\eta(x, t)$ of a stretched string with line density σ and tension τ obeys

$$
\sigma \eta_{t t}=\tau \eta_{x x} .
$$

(a) Suppose that a particle of mass M is attached to the string at $x=0$. Show that the particle's equation of motion is

$$
\left.M \eta_{t t}\right|_{x=0}=\tau\left[\eta_{x}\right]_{x=0-}^{x=0+} .
$$

(b) Suppose that a wave of the form $\exp [i(k x-\omega t)]$ is generated at large, negative x. Find the complex amplitudes R and T of the reflected and transmitted waves.
Verify that $|R|^{2}+|T|^{2}=1$. What does this mean physically?
(c) Comment briefly on the behaviour of R and T when M is large or small, and write down the relevant dimensionless combination of parameters.
3. The motion of an incompressible fluid of unit density in a frame rotating with angular velocity Ω is given by

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}+\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{x})=-\nabla p
$$

where \mathbf{u} is the fluid velocity, and p the pressure.
(a) Show that linear waves in a fluid rotating about the z axis obey the equation

$$
\nabla^{2} P_{t t}+4 \Omega^{2} P_{z z}=0
$$

for some modified pressure P to be determined.
(b) Hence derive the dispersion relation for these waves in the form

$$
\omega= \pm 2 \Omega \cos \theta
$$

where θ is the angle between the wave vector and the rotation axis. Find the angle between the phase velocity \mathbf{c}_{p} and the group velocity \mathbf{c}_{g}.
(c) A small sphere within the fluid oscillates with frequency $\omega>2 \Omega$.

Find an expression for the disturbance generated in the fluid outside the sphere.
Comment on the shape of the disturbance in the limits
(i) $\omega \rightarrow \infty$,
(ii) $\omega \rightarrow 2 \Omega$ from above.

Is this disturbance an evanescent wave?
[Hint: $\phi=1 / r$ is a solution of Laplace's equation in three dimensions when $r \neq 0$.]
4. Solutions to a scalar wave equation are given approximately by

$$
u(\mathbf{x}, t)=A(\mathbf{x}, t) e^{i \theta(\mathbf{x}, t) / \epsilon},
$$

where $0<\epsilon \ll 1$. The local frequency and wave vector defined by

$$
\omega=-\frac{1}{\epsilon} \frac{\partial \theta}{\partial t}, \quad \mathbf{k}=\frac{1}{\epsilon} \frac{\partial \theta}{\partial \mathbf{x}}
$$

obey the dispersion relation

$$
\omega=\Omega(\mathbf{k} ; \mathbf{x}, t) .
$$

(a) Derive the ray-tracing equations

$$
\frac{d \mathbf{k}}{d t}=-\frac{\partial \Omega}{\partial \mathbf{x}} \quad \text { along the rays } \quad \frac{d \mathbf{x}}{d t}=\frac{\partial \Omega}{\partial \mathbf{k}}
$$

(b) The dispersion relation for sound waves in a stratified medium is given by $\omega=\omega_{0}|\mathbf{k}| z$, where ω_{0} is a positive constant. Consider rays moving in the $x z$ plane.
(i) Show that the ray paths form arcs of circles, and give an expression for their radii.
(ii) Show that rays moving towards the line $z=0$ do not reach the line in finite time.
[Hint for (b): Begin by finding any conserved quantities, for which standard results may be quoted without proof.

$$
\frac{d}{d z} \cosh ^{-1}(a / z)=-\frac{a}{z}\left(a^{2}-z^{2}\right)^{-1 / 2}
$$

5. (a) The intrinsic frequency of waves on deep water is given by

$$
\widehat{\omega}^{2}=g|\mathbf{k}| .
$$

Using the transformation $\mathbf{x}_{\text {old }}=\mathbf{x}_{\text {new }}-U t \widehat{\mathbf{x}}$, show that the dispersion relation as seen from a frame moving with constant velocity U in the negative x direction may be written as

$$
\omega=k \pm\left(k^{2}+l^{2}\right)^{1 / 4}
$$

after introducing suitable dimensionless variables.
(b) A steady wave pattern is generated by a point source located at $\mathbf{x}=0$ in the moving frame. Given that the disturbance may be written as

$$
\eta(x, y)=\int_{-\infty}^{\infty} F(k) e^{i(k x+l y)} d k
$$

use the method of stationary phase to show that the far-field disturbance is confined to a cone, and find the angle of that cone.

