
1. (a) Using the substitution φ = ψx, derive the linearised Korteveg–de Vries equation

φt + αφx + βφxxx = 0

from the Lagrangian L =
∫

Ldx, with Lagrangian density

L =
1

2
ψtψx +

1

2
αψ2

x −
1

2
βψ2

xx.

(b) Consider the chain rule for partial derivatives in the form

∂L

∂t

∣∣∣
x

=
∂L

∂t

∣∣∣
x,ψ,ψx,ψt,ψxx

+
∂L

∂ψ
ψt +

∂L

∂ψt

ψtt +
∂L

∂ψx

ψxt +
∂L

∂ψxx

ψxxt.

On the left L is treated as a function of x and t only, and on the right L is treated
as a function of x, t, ψ and its derivatives.

By using this relation and the Euler–Lagrange equation, show that the quantity
E given by

E =
1

2
βψ2

xx −
1

2
αψ2

x,

where ψ(x, t) is a solution of the equation derived from the above Lagrangian,
satisfies a conservation law of the form

∂E

∂t
+

∂F

∂x
= 0,

and give an expression for the quantity F .

Hint: For part (b) you may find it useful to express E and F in terms of a general
Lagrangian L(ψ, ψt, ψx, ψxx) first.
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2. (a) Suppose that solutions to a scalar wave equation are given approximately by

u(x, t) = A(x, t)eiθ(x,t)/ε.

The parameter ε is sufficiently small that the dispersion relation

ω = Ω(k;x, t)

holds for the local frequency and wave vector defined by

ω = −1

ε

∂θ

∂t
, k =

1

ε

∂θ

∂x
.

Hence derive the ray-tracing equations

dk

dt
= −∂Ω

∂x
along rays

dx

dt
=

∂Ω

∂k
.

(b) Consider the two-dimensional wave equation

∂2φ

∂t2
− c(z)2∇2φ = 0

for the scalar variable φ(x, z, t).

Suppose the wave speed c is given by

c(z) =
c+ + c−

2
+

c+ − c−
2

tanh z,

which varies smoothly and monotonically from the value c− as z → −∞ to
some other value c+ as z → +∞.

Plane waves with frequency ω and wave vector k = |k|(cos θ−, sin θ−) are
generated at large, negative z and propagate in the positive z direction through
the region of varying c.

Use the conservation properties of the ray-tracing equations to find an ordinary
differential equation for the ray paths.

Without attempting to solve this ordinary differential equation, sketch a typical
ray path, and deduce Snell’s law,

cos θ+

c+

=
cos θ−

c−
,

for the angle θ+ that the emerging ray paths make to the horizontal as z → +∞.

(c) Snell’s law also holds when one considers a sharp transition at z = 0 between
two different media, each with uniform wave speed c±. Why is this?
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3. (a) An acoustic wave guide consists of a rectangular channel with rigid walls at
x = 0 and x = a, and at y = 0 and y = b. It contains air with mean density ρ0.
By seeking separable solutions of the form

φ(x, y, z, t) = X(x)Y (y)ei(kz−ωt)

to the three dimensional wave equation

∂2φ

∂t2
− c2∇2φ = 0,

with constant sound speed c, show that the frequency ω satisfies the dispersion
relation

ω2 = c2

[
k2 +

n2π2

a2
+

m2π2

b2

]
,

where n and m are integers.

(b) Suppose that a wave maker generates waves for one value of n and m at the
end of the wave guide, with frequency ω > cfnm, where

fnm =

[
n2π2

a2
+

m2π2

b2

]1/2

.

Write down the energy density and energy flux for sound waves. By integrating
these quantities across an xy cross section of the wave guide, and averaging
over a wave period, show that the average integrated energy density travels
down the wave guide with the group velocity obtained from the dispersion
relation above.

Why does the energy not leak through the sides of the wave guide?

(c) Briefly describe what would happen if the wave maker oscillated with a lower
frequency ω < cfnm.

Hint: In sound waves the pressure perturbation is related to the velocity

potential by p′ = −ρ0
∂φ

∂t
.
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4. (a) The pressure p0 and density ρ0 in an isothermal atmosphere at rest under
hydrostatic balance are given by

ρ0(z) = ρ0(0) exp(−z/H), p0(z) = p0(0) exp(−z/H),

where the constant H is called the scale height, and p0 = RT0ρ0.

Small perturbations around this rest state,

ρ = ρ0(z) + ρ′(x, y, z, t), p = p0(z) + p′(x, y, z, t), u′ = u = (u, v, w),

are governed by the anelastic equations

∂tu⊥ +∇⊥(p′/ρ0) = 0, ∂tw − g

(
θ′

θ0

)
+

∂

∂z

(
p′

ρ0

)
= 0,

∇·(ρ0u) = 0,
∂

∂t

(
θ′

θ0

)
+

N2

g
w = 0,

where ∇⊥ = (∂x, ∂y), and u⊥ = (u, v) is the horizontal velocity. The quantity θ′

is related to the pressure and density fluctuations by

θ′

θ0

− 1

c2

p′

p0

+
ρ′

ρ0

= 0.

By combining pairs of the above four equations, derive the relations
(

∂2

∂t2
+ N2

)
w +

∂2

∂z∂t

(
p′

ρ0

)
= 0,

∂

∂t

(
1

H
− ∂

∂z

)
w +∇2

⊥

(
p′

ρ0

)
= 0.

(b) Show that solutions in which w and p′/ρ0 are both constant multiples of
exp[i(k · x− ωt)] exist provided ω satisfies the dispersion relation

ω2 = N2
k2

x + k2
y

k2
x + k2

y + k2
z + ikz/H

.

Hence show that purely oscillatory solutions, for which the frequency ω is purely
real, are only possible when kz is complex. In other words, the amplitude of the
oscillations must vary exponentially in z, at a rate to be determined.

Write down the dispersion relation for these purely oscillatory solutions.

(c) Without making detailed calculations, is the group velocity perpendicular to the
phase velocity for these purely oscillatory solutions? What happens when the
wavelength 2π/|k| is very small compared with the scale height H?
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5. (a) The dispersion relation for water waves on a layer of finite depth H is given by

ω2 = gk tanh(kH),

where k is the wavenumber and g is gravity. Solutions to this dispersion relation
may be written as

ω = ±Ω(k).

Sketch Ω(k), and find the maximum values of the phase and group velocities
as functions of wave number.

(b) Suppose the free surface η(x, t) is initially at rest at t = 0, with η(x, 0) = η0(x) for
some function η0(x) that decays rapidly as x → ±∞. Show that the subsequent
solution may be written as

η(x, t) =

∫ ∞

−∞

[
F (k)eikx−Ω(k)t + F (k)eikx+Ω(k)t

]
dk,

for some function F (k) to be written down.

(c) Use the idea behind the method of stationary phase to simplify the above
integral at large t, with x/t fixed. Hence explain why the free surface near
the rightmost wavefront behaves as though it were evolving under the equation

ηt + cηx + γηxxx = 0,

with parameters c and γ to be determined. What are the relevant initial
conditions?

(d) Without attempting to calculate the solution explicitly, determine how the
maximum displacement near the rightmost wavefront decays with time for large
times.

Hint: tanh z = z − 1

3
z3 +

2

15
z5 + · · · for small z.

M3A13/M4A13 Page 6 of 6


