A viscous incompressible fluid of density p, kinematic viscosity v flows in the two-dimensional
channel defined by 0 < v < HF(z/L). If Up is a typical flow velocity, write down the
conditions which must be satisfied if lubrication theory is to be used to describe the flow.

Show that if X = z/L, Y = y/h the dimensionless form of the lubrication equations are
Ux +Vy =0,

0= —-Px + Uyy,
0= _PY:

where U, V, and P are dimensionless velocities and pressures.

If the pressure difference between X=0 and X=his “[hjg L. where v = —E. show that P is given

by

[ ax/F
Jy dX/Fs
Show that the dimensionless shear stress acting on the lower wall has a maximum magnitude

of A/2 for the case
X -1y
F=1+L7fL,

Ldx
A=./0 -FE‘.

where

A fluid of viscosity p fills a volume V confined within the surface S and the motion is slow
enough for the equations of motion to reduce to the Stokes equations

Vau=0,

Vp = pVu.

Show that there is no more than one solution of the above system satisfying
v=U"

on the surface S.

Consider the function
b= Z#f e,;jeijdV,
v

where V is the volume included within S. If the velocity field u is a solution of
Vau=0

show that @ is minimised by u satisfying the Stokes equations.



Consider the steady two-dimensional flow of a viscous fluid of kinematic viscosity ». Show that
the equations of motion under appropriate approximations can be reduced to the boundary
layer equations

Uy Uy — U, Uy = UU, + 20y,

where U is the fluid velocity at infinity. Show that these equations support a similarity solution

U = klﬂ','mf('n), n = k;zyz;ﬂ’

with ky, ko, m, n unknown constants provided that m-+n=1.

Suppose that the above system is used to describe a jet flow symmetric about y=0 with
u — 0, y — *oo. Now write down the x momentum equation and show that if U=0 when

(=]

y —+ Fco then f u? dy = constant and deduce that 2m-n=0.

—00
Hence show that if k;ks = 6 a similarity solution of the above form exists if

fm + szr:+2fr2 — O,
Deduce that
f+=0

where £ is constant. Integrate once more to show that £ = Btanh 7.



4.

Consider the flow of an incompressible fluid of kinematic viscosity v between cylinders of radii
R, and R,. The inner cylinder rotates with an angular velocity £2; + 25 coswt and the other
cylinder is at rest. The equations of motion in cylindrical polar coordinates are

du uw 1o6v  Ow
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where p is the density,
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Show that the equations have a solution (0,v(r,t),0). Determine v(rt) and show that the
pressure P may be written

P= p/ v2(r, t)dr.

What form do you expect the solution for v to take in the limit w —07 Write down your
predicted form for v in that limit.

Consider the unidirectional flow z = (@(y),0,0) of an incompressible fluid. Taking the
equations of motion in the dimensionless form

Ug + vy = 0

1
Uy + UUg + VUy = —Pg + = (Ugg + Uyy)

R
1
Ve + UUp Yy = —py + E(vm + Uyy)

where R is the Reynolds number, show that small perturbations satisfy the Orr-Sommerfield
equation

2
- 2 =M 1 a- 249

(@—c)(vyy —a™v)—T v = _iaR(dy2 — o)
where o and c are the wavenumber in the x direction and wavespeed of the disturbance. Show
that if v = 0, ony = y1, Yo, then unstable disturbances cannot exist in the infinite Reynolds

number limit unless an inflexion point exists in %(y).

M3A10/M4AI0 VISCOUS FLOW (2007) Page 4 of 4



