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1. (i) (a) Write down an expression for the probability mass function (pmf) or probability

density function of the one-parameter exponential family of distributions (EF).

(b) Give two reasons for the importance of the EF in parameter estimation.

(ii) The generalised power series distributions (GPS) are discrete distributions having their

pmf in the form

fX|θ(x | θ) = ax θ
xeβ(θ) (x = 0, 1, . . .),

with θ > 0, ax ≥ 0, where for each value of x the ax are given constants, and where
β(θ) is a normalising constant making the total probability 1.

(a) Show that GPS distributions are special cases of the EF.

(b) If β(θ) is twice differentiable, show that we can write the score U(θ) and Fisher

information I(θ) for a single random variable X from GPS in a regular estimation

problem for a single unknown parameter θ as

U(θ) =
X

θ
+ β′(θ), I(θ) =

E(X)

θ2
− β′′(θ) .

(c) Using the expression for U(θ) given in (b), find an expression for EX|θ(X) in terms

of θ and β(θ).

(d) Show that varX|θ(X) = −θβ′(θ)− θ2β′′(θ). Give your reasoning.

(e) Show that Binomial (n, ψ) is a special case of GPS by identifying ax , θ and β(θ).

2. We have a random sample x = {x1 , x2 , . . . , xn } from Poisson (μ) (μ > 0).

(a) Show that the sample mean x is a sufficient statistic for μ.

Show that x is the maximum likelihood estimate of μ.

(b) For fixed k 6= 0, let

t(x) =

{
1 (x1 = k),

0 (x1 6= k).

Show that t(x) is unbiased for θ =
μk

k!
e−μ .

(c) Apply the Rao-Blackwell Theorem to show that

(
s

k

)(
1

n

)k (

1−
1

n

)s−k
, where

s = nx, is an unbiased estimate of θ.

Explain, without proof, but stating a further property of x and theorems used, why we

may take this estimate to be a uniformly minimum variance unbiased estimate of θ.

(d) Comment on the relationship of this estimate to the maximum likelihood estimate for θ

as n becomes large for fixed k.
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3. (i) For an interval estimation problem for a single unknown parameter, explain briefly what

is meant by a pivotal quantity and a best confidence set (ie the shortest).

(ii) X1 , X2 , . . . , Xn are independent random variables, where Xk has the probability

density function

fXk|θ(xk | θ) =

{
exp{−(xk − kθ)} (xk ≥ kθ),

0 (otherwise),

where θ > 0 is an unknown parameter.

(a) From observed values x = {x1 , x2 , . . . , xn } write down the likelihood function
`(θ|x).

Show that t = min
k

(xk
k

)
is sufficient for θ.

(b) Show that Yk =
Xk

k
− θ is Exponential (k) for each k.

Find the distribution of Z = min
k
(Yk).

Identify Z as a pivotal quantity, and hence find the sampling distribution of t.

(c) Show that the best 100(1 − α)% confidence set for θ is given by P (0 < Z < ξ),

where ξ is to be found as a function of α.

Hence find the best confidence set for θ.

4. We have a random sample x = {x1 , x2 , . . . , xn } from Pareto (θ, 2) which has the
probability density function

fX|θ(x | θ) =






θ2θ

xθ+1
(2 ≤ x <∞),

0 (otherwise),

where θ > 0 is an unknown parameter.

(a) Show that the maximum likelihood estimate θ̂ of θ is

{
1

n

n∑

i=1

ln

(
1

2
xi

)}−1

.

(b) To test H0 : θ = 1 against H1 : θ 6= 1, show that the likelihood ratio test statistic

λ(x) =
`(θ̂ | x)
`(1 | x)

,

where `(θ|x) is the likelihood function, is such that

Λ(x) = ln λ(x) = n

(
1

θ̂
+ ln θ̂ − 1

)

.

(c) By showing that Λ(x) has a unique minimum at θ̂ = 1, show that the test rejects H0 if

θ̂ is too large or too small relative to value 1.

Show that the acceptance set can be written in the form

c1 <
∑

i

ln xi < c2 .

(d) By showing that ln (1
2
X) is Exponential (θ), describe precisely how you would obtain the

values of c1 and c2 for a size-α test.
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5. We have a random sample x = {x1 , x2 , . . . , xn } from N(θ, 1), where θ is an unknown

parameter.

(a) Use the improper prior probability density function π(θ) ∝ 1 (−∞ < θ <∞) to identify
the posterior probability density function π(θ|x) as the probability density function (pdf)
of a normal distribution.

Write down the posterior mean, posterior variance, and a 95% credible region for θ.

[You may use that Φ(1.96) = 0.975, where Φ is the cumulative distribution function for

N(0, 1). ]

(b) Suppose that we have prior knowledge that θ > 0. Using the improper prior pdf

π(θ) ∝

{
1 (0 < θ <∞),

0 (otherwise),

obtain the posterior pdf π(θ|x).

Find a 95% credible region for θ of the form (0, ξ), where ξ is to be obtained in terms

of Φ and the data.
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Distribution f(x | θ) x ∈ X θ ∈ Θ

Bernoulli (θ) θx(1− θ)1−x x = 0, 1 0 < θ < 1

(Discrete) Uniform (k)
1

k
x = 1, 2, . . . , k k = 1, 2, . . .

Binomial(n, θ)

(
n

x

)

θx(1− θ)n−x x = 0, 1, . . . , n 0 < θ < 1

Poisson(λ)
λx e−λ

x!
x = 0, 1, 2, . . . λ > 0

Geometric(θ) (1− θ)x−1θ x = 1, 2, . . . 0 < θ < 1

Negative Binomial (ν, θ)

(
x+ ν − 1
x

)

(1− θ)xθν x = 0, 1, 2, . . . 0 < θ < 1, ν > 0

Uniform(α, β)
1

β − α
α < x < β α < β

Exponential(λ) λ exp(−λx) x > 0 λ > 0

Gamma(ν, λ)
1

Γ(ν)
λ(λx)ν−1 exp(−λx) x > 0 λ > 0, ν > 0

Cauchy (α, β)
1

πβ

{

1 +

(
x− α
β

)2}−1
−∞ < x <∞ β > 0

N(μ, σ2)
1

√
2πσ2

exp

{

−
1

2

(
x− μ
σ

)2}

−∞ < x <∞ σ > 0

Beta (α, β)
1

B(α, β)
xα−1(1− x)β−1 0 < x < 1 α > 0, β > 0

Weibull (α, β) βαxα−1 exp(−βxα) x > 0 α > 0, β > 0

Gumbel (α, β)
1

β
exp

(

−
x− α
β

)

exp

{

− exp

(

−
x− α
β

)}

−∞ < x <∞ β > 0

Pareto (θ, α)
θαθ

xθ+1
x > α θ > 0, α > 0

Chi-square χ2k
1

2k/2 Γ(k/2)
x(k/2)−1 exp

(

−
1

2
x

)

x > 0 k = 1, 2, . . .

Student tm
Γ((m+ 1)/2)

Γ(m/2)
√
πm

(

1 +
x2

m

)−(m+1)/2
−∞ < x <∞ m = 1, 2, . . .
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Distribution E(X) var (X) GX(z) or MX(t)

Bernoulli (θ) θ θ(1− θ) 1− θ + θz

Uniform(k) (k + 1)/2 (k2 − 1)/12 z(1− zk)/{k(1− z)}

Binomial(n, θ) nθ nθ(1− θ) (1− θ + θz)n

Poisson(λ) λ λ exp{−λ(1− z)}

Geometric(θ)
1

θ

1− θ
θ2

θz

1− z(1− θ)

Negative Binomial (ν, θ)
ν(1− θ)
θ

ν(1− θ)
θ2

(
θz

1− z(1− θ)

)ν

Uniform(α, β) (α+ β)/2 (β − α)2/12
eβt − eαt

(β − α)t

Exponential(λ) 1/λ 1/λ2 λ/(λ− t)

Gamma(ν, λ) ν/λ ν/λ2 {λ/(λ− t)}ν

Cauchy (α, β) none none none

N(μ, σ2) μ σ2 exp(μt+ 12σ
2t2)

Beta (α, β)
α

α+ β

αβ

(α+ β)2(α+ β + 1)
1F1(α;β; t)

Weibull (α, β) β−1/αΓ

(

1 +
1

α

)

β−2/α
{

Γ

(

1 +
2

α

)

−

[

Γ

(

1 +
1

α

)]2}

none

Gumbel (α, β) α+ βγ (γ = 0.5772 ∙ ∙ ∙) π2β2/6 eαt Γ(1− βt) (t < 1/β)

Pareto (θ, α)
αθ

θ − 1
(θ > 1)

α2 θ

(θ − 1)2(θ − 2)
(θ > 2) none

Chi-square χ2k k 2k (1− 2t)−k/2

Student tm 0 (m = 2, 3, . . .)
m

m− 2
(m = 3, 4, . . .) none
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