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1. Consider the one-parameter exponential family of distributions having the probability density
function (pdf)

(a)

Friole |1 6) = exp{ - 6(6) +alx) +5(6)}

Show that, for a random sample z,xs,...,x, from the distribution, their harmonic
I 1\, i -

mean, t = (— —) , is a sufficient statistic for 6.
n 1 ZT;

Show that if ¢ is the maximum likelihood estimate (MLE) of 6 then

¢'(0) = —05'(0) . (%)
If () can be assumed, find a function 1 (f) that has an unbiased estimator Q/ﬁ\ for which
var (1) satisfies the Cramér-Rao lower bound.

Show that the pdf

Ixp(z | 0) = % exp <— g) (0 <z < 00)

is a special case of the above, with (x) satisfied.

Write down t(6) and its unbiased estimator ), and show that var (@Z) =—.

Find the asymptotic variance of the MLE of 6.

2. Suppose that X, X», ..., X,, are independent and identically distributed N(6,1).

a
b
c

(
(
(
(d

)
)
)
)

(¢)

Show that X is a sufficient statistic for 6 .

Explain, without proof, why we may take X to be complete for 6.
Show that X7 — 1 is unbiased for 62.

For the case n = 2,

(i) show that X; — X is independent of X.
(i) Hence find the distribution of X, given X.

(i) Find E(X?| X) and show that X - + is the minimum variance unbiased

estimator (MVUE) of 6.

If you can assume that X; — X is independent of X for any n, find the MVUE of 62
in the general case of a sample of size n.
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3. (a) (i) Whatis meant by the term sufficient statistic?

(b)

(i) What is a complete statistic?

(iii)  State a sufficient condition for a function of a sufficient statistic ¢ to be the unique

unbiased estimator of an unknown parameter 6.

Monthly counts of accidents reported to a safety officer may be modelled as independent
Poisson (¢) random variables. The random variables are observed on successive months
to take values z1,2o,..., 2, .

(i) Show that s = sz is a sufficient statistic for 6.
1

(i) The safety officer wishes to estimate the odds in favour of one or more accidents

being reported in any future month, that is to say, an estimate of

P(X #0)

v = P(X=0)"

Find ¢(0).
By writing
Et(S) = Y t(s)ps(s),

s=0
where pg(s) is the probability mass function for S, find coefficients ¢(s) which make
t(S) an unbiased estimator of ().
Hence find the MVUE for 1), stating the condition on S that you need to be satisfied,
and why you can assume that it is satisfied.

State the Neyman-Pearson Lemma.

What is the Monotone Likelihood Ratio Criterion for obtaining a uniformly most powerful
(UMP) test of Hy : 6 < 0* against H, : § > 0*, where 0" is given?

Find the size « UMP test of Hj : 0 < 6* against H; : 0 > 0* > 0, when X, X5,..., X,
are independent and identically distributed Gamma(2,6) (6 > 0), ie

fxp(z | 0) = 0%z e 07 (z>0).

Show how the power function for the test might be found.
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5. (a) What is meant by saying that a parameter © has an improper prior distribution?

(b) Suppose that X;, Xs,..., X, given © = 0 are independent and identically distributed
Pareto (0), ie

0
fxplz | 0) = 1 (x > 1) where 6 > 0.

n 1
(i) Show that the geometric mean, t = (H xz) " is a sufficient statistic for 6.
1

(i)  Find the maximum likelihood estimator 9 for 6.

(iii) Suppose now that © has the improper prior probability density function (pdf) 6!
on (0, o0). Find the posterior pdf and show that it can be written as the pdf of ¢V,
where W has a an distribution, with ¢ being a function of the sufficient statistic .
Find ¢ and m.

Hence find the expectation and variance of the posterior distribution of ©.
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Distribution flz | 6) zeX 0O
Bernoulli(0) 6% (1 —0)t—= z=0,1 0<o<1
. . 1
(Discrete) Uniform(k) - r=1,2,...,k
Binomial(n, 0) (") 6=(1— 0)"" z=01,....n 0<h<1
x
T ,—A
Poisson(\) A ;‘ z=0,1,2,... A>0
Geometric(6) (1-0)*"1o r=1,2, 0<fh<1
. . . z+n-—1 T an
NegativeBinomial (n., 0) ) (1-0)*0 x=0,1,2,... 0<0<1, n=12,...
n—
. 1
Uniform(a, B3) a<z<f a<pf
08—«
Exponential () Aexp(—Ax) x>0 A>0
1
Gamma(v, \) m)\()\w)l’*l exp(—Ax) x>0 A>0,v>0
v
Cauchy (o, 3) ! 00 < T < 00 8>0
auchy (a, — —
A1+ (552)}
N(p,0?) L . { <x—,u)2} 00 <z < 00 2>0
, o Xp4 — = — o
: V20?2 P o
Beta(a, ) ! 2271 — )Pt 0<z<l1 a>0, >0
’ B(a, B) ’
Weibull (v, 3) Baz®~ ! exp(—Bz%) x>0 a>0,03>0
2 1 (k/2)—1 1 _
Xk Wﬂf exp(—§a:) z >0 k=1,2,
2
tm F((m + 1)/2) ( fE_)_(mJ,-l)/Q —00 < <00 m = 1727
['(m/2)/mm m
P. 0 0 1 6>0
areto(0) sy x> >
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Distribution E(X) var (X) Gx(z) or Mx(t)
Bernoulli(0) 0 0(1—0) 1-0+06z
(Discrete) Uniform(k) (k+1)/2 (k2 —1)/12 2(1 — 2 /{k(1 - 2)}
Binomial(n, 6) nf nf(1 —0) (1—-60+062)"
Poisson(\) A A exp{—\(1—-2)}
Geometric(6) % . ;2 ’ %
NegativeBinomial (n, 6) n(le— %) n(l(g; %) (%ﬁ—@))n
Uniform(e, ) 3(a+p) 58— )’ (P — o) /{(8 — )t}
Exponential () 1/A 1/X2 A(A=1)
Gamma(v, \) v/ v/\? {A/ (A=t}
Cauchy none none none
N(u,o?) u o? exp(ut + 20%t?)
Beta(a, ) Oziﬁ (oz—i—ﬁ)Z?[Ozﬂ-i-ﬁ—F ) 151 (s B 1)
Weibull(a, §) g~l/er (1 n é) g2/ {r <1 + 2)

— [I‘ (1—1—1)}2} none

o'
X3 k 2k (1—2t)=k/2
tm 0 % none
Pareto(0) 90%1 = 1)2(0 —3) none
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