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1. Consider the one-parameter exponential family of distributions having the probability density

function (pdf)

fX|θ(x | θ) = exp {
1

x
φ(θ) + α(x) + β(θ)} .

(a) Show that, for a random sample x1, x2, . . . , xn from the distribution, their harmonic

mean, t =
( 1
n

n∑

1

1

xi

)−1
, is a sufficient statistic for θ.

(b) Show that if t is the maximum likelihood estimate (MLE) of θ then

φ′(θ) = −θβ′(θ) . (∗)

(c) If (∗) can be assumed, find a function ψ(θ) that has an unbiased estimator ψ̂ for which
var (ψ̂) satisfies the Cramér-Rao lower bound.

(d) Show that the pdf

fX|θ(x | θ) =
θ

x2
exp

(

−
θ

x

)

(0 < x <∞)

is a special case of the above, with (∗) satisfied.

Write down ψ(θ) and its unbiased estimator ψ̂, and show that var (ψ̂) =
1

n θ2
.

Find the asymptotic variance of the MLE of θ.

2. Suppose that X1, X2, . . . , Xn are independent and identically distributed N(θ, 1).

(a) Show that X is a sufficient statistic for θ .

(b) Explain, without proof, why we may take X to be complete for θ.

(c) Show that X21 − 1 is unbiased for θ
2.

(d) For the case n = 2,

(i) show that X1 −X is independent of X.

(ii) Hence find the distribution of X1 given X.

(iii) Find E(X21 | X) and show that X
2
− 1
2
is the minimum variance unbiased

estimator (MVUE) of θ2 .

(e) If you can assume that X1 −X is independent of X for any n, find the MVUE of θ2

in the general case of a sample of size n.
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3. (a) (i) What is meant by the term sufficient statistic?

(ii) What is a complete statistic?

(iii) State a sufficient condition for a function of a sufficient statistic t to be the unique

unbiased estimator of an unknown parameter θ.

(b) Monthly counts of accidents reported to a safety officer may be modelled as independent

Poisson (θ) random variables. The random variables are observed on successive months

to take values x1, x2, . . . , xn .

(i) Show that s =
n∑

1

xi is a sufficient statistic for θ .

(ii) The safety officer wishes to estimate the odds in favour of one or more accidents

being reported in any future month, that is to say, an estimate of

ψ =
P (X 6= 0)
P (X = 0)

.

Find ψ(θ).

By writing

E(t(S)) =
∞∑

s=0

t(s) pS(s) ,

where pS(s) is the probability mass function for S, find coefficients t(s) which make

t(S) an unbiased estimator of ψ(θ).

Hence find the MVUE for ψ, stating the condition on S that you need to be satisfied,

and why you can assume that it is satisfied.

4. (a) State the Neyman-Pearson Lemma.

(b) What is the Monotone Likelihood Ratio Criterion for obtaining a uniformly most powerful

(UMP) test of H0 : θ ≤ θ∗ against H1 : θ > θ∗, where θ∗ is given?

(c) Find the size α UMP test of H0 : θ ≤ θ∗ against H1 : θ > θ∗ > 0, when X1, X2, . . . , Xn
are independent and identically distributed Gamma(2, θ) (θ > 0), ie

fX|θ(x | θ) = θ2x e−θx (x > 0) .

Show how the power function for the test might be found.
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5. (a) What is meant by saying that a parameter Θ has an improper prior distribution?

(b) Suppose that X1, X2, . . . , Xn given Θ = θ are independent and identically distributed

Pareto (θ), ie

fX|θ(x | θ) =
θ

xθ+1
(x > 1) where θ > 0.

(i) Show that the geometric mean, t =
( n∏

1

xi

) 1
n

, is a sufficient statistic for θ.

(ii) Find the maximum likelihood estimator θ̂ for θ.

(iii) Suppose now that Θ has the improper prior probability density function (pdf) θ−1

on (0, ∞). Find the posterior pdf and show that it can be written as the pdf of cΨ,
where Ψ has a χ2m distribution, with c being a function of the sufficient statistic t.

Find c and m.

Hence find the expectation and variance of the posterior distribution of Θ.
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Distribution f(x | θ) x ∈ X θ ∈ Θ

Bernoulli(θ) θx(1− θ)1−x x = 0, 1 0 < θ < 1

(Discrete) Uniform(k)
1

k
x = 1, 2, . . . , k

Binomial(n, θ)

(
n

x

)

θx(1− θ)n−x x = 0, 1, . . . , n 0 < θ < 1

Poisson(λ)
λx e−λ

x!
x = 0, 1, 2, . . . λ > 0

Geometric(θ) (1− θ)x−1θ x = 1, 2, . . . 0 < θ < 1

NegativeBinomial(n, θ)

(
x+ n− 1
n− 1

)

(1− θ)xθn x = 0, 1, 2, . . . 0 < θ < 1, n = 1, 2, . . .

Uniform(α, β)
1

β − α
α < x < β α < β

Exponential(λ) λ exp(−λx) x > 0 λ > 0

Gamma(ν, λ)
1

Γ(ν)
λ(λx)ν−1 exp(−λx) x > 0 λ > 0, ν > 0

Cauchy(α, β)
1

πβ {1 + (x−αβ )
2}

−∞ < x <∞ β > 0

N(μ, σ2)
1

√
2πσ2

exp

{

−
1

2

(
x− μ
σ

)2}

−∞ < x <∞ σ2 > 0

Beta(α, β)
1

B(α, β)
xα−1(1− x)β−1 0 < x < 1 α > 0, β > 0

Weibull(α, β) βαxα−1 exp(−βxα) x > 0 α > 0, β > 0

χ2k
1

2k/2Γ(k/2)
x(k/2)−1 exp(−12x) x > 0 k = 1, 2, . . .

tm
Γ((m+ 1)/2)

Γ(m/2)
√
πm

(1 +
x2

m
)−(m+1)/2 −∞ < x <∞ m = 1, 2, . . .

Pareto(θ)
θ

xθ+1
x > 1 θ > 0
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Distribution E(X) var (X) GX(z) or MX(t)

Bernoulli(θ) θ θ(1− θ) 1− θ + θz

(Discrete) Uniform(k) (k + 1)/2 (k2 − 1)/12 z(1− zk)/{k(1− z)}

Binomial(n, θ) nθ nθ(1− θ) (1− θ + θz)n

Poisson(λ) λ λ exp{−λ(1− z)}

Geometric(θ)
1

θ

1− θ
θ2

θz

1− z(1− θ)

NegativeBinomial(n, θ)
n(1− θ)
θ

n(1− θ)
θ2

(
θz

1− z(1− θ)

)n

Uniform(α, β) 1
2(α+ β)

1
12(β − α)

2 (eβt − eαt)/{(β − α)t}

Exponential(λ) 1/λ 1/λ2 λ/(λ− t)

Gamma(ν, λ) ν/λ ν/λ2 {λ/(λ− t)}ν

Cauchy none none none

N(μ, σ2) μ σ2 exp(μt+ 12σ
2t2)

Beta(α, β)
α

α+ β

αβ

(α+ β)2(α+ β + 1)
1F1(α;β; t)

Weibull(α, β) β−1/αΓ

(

1 +
1

α

)

β−2/α
{

Γ

(

1 +
2

α

)

−

[

Γ

(

1 +
1

α

)]2}

none

χ2k k 2k (1− 2t)−k/2

tm 0
m

m− 2
none

Pareto(θ)
θ

θ − 1
θ

(θ − 1)2(θ − 2)
none
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