Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY-JUNE 2004

This paper is also taken for the relevant examination for the Associateship.

M2S3 Statistical Theory I

Date: Friday, 28th May 2004 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

A formula sheet is given on pages 5 & 6.

- 1. (a) In a regular estimation problem T is an unbiased estimator of the single unknown parameter θ . State the relationship between the efficient score U_{θ} and T which provides necessary and sufficient conditions for the variance of T to attain the Cramer-Rao lower bound for θ .
 - (b) Y_1, \ldots, Y_n are independent Poisson observations, each with unknown parameter θ .
 - (i) Show that

$$U_{\theta} = \frac{n(\overline{Y} - \theta)}{\theta}$$

where $\overline{Y} = \frac{1}{n} \sum Y_i$.

- (ii) Is \overline{Y} the minimum variance unbiased estimator of θ ? Justify your answer.
- (iii) Find the Fisher information with respect to ϕ , where $\phi = \theta(\theta + 2)$.
- (iv) Show that there does not exist an unbiased estimator of ϕ whose variance attains the Cramer-Rao lower bound for ϕ .
- (v) Find a random variable S, a function of \overline{Y} , which is unbiased for ϕ and show that

$$\operatorname{var} S > \frac{4\theta(\theta+1)^2}{n}.$$

- 2. (a) State (without proof)
 - (i) the Neyman Factorisation Theorem.
 - (ii) the Rao-Blackwell Theorem.
 - (b) Each of the two independent observations X and Y has an exponential distribution with unknown parameter θ .
 - (i) Show that T = X + Y is a sufficient statistic for θ and state the distribution of T.
 - (ii) Given x > 0,

$$a(T) = \begin{cases} \frac{x}{T} & T > x, \\ 1 & \text{otherwise.} \end{cases}$$

Show that a(T) is unbiased for $F_X(x)$, the cumulative distribution function of X evaluated at x.

- (iii) It can be shown that the family of distributions of T is complete. Show that a(T) is the unique function of T which is unbiased for $F_X(x)$.
- (iv) Deduce that a(T) is the minimum variance unbiased estimator of $F_X(x)$.

- **3.** (a) In a statistical inference problem the maximum likelihood estimator of the unknown parameter θ is $\widehat{\theta}$. If $\lambda=g(\theta)$ is a one-one known function of θ show that $\widehat{\lambda}=g(\widehat{\theta})$ is a maximum likelihood estimator of λ
 - (b) The observation Y has a binomial distribution with known index n and unknown parameter θ $(0<\theta<1)$.
 - (i) Find the maximum likelihood estimator of θ and show that its variance is

$$\frac{\theta(1-\theta)}{n}$$
.

(ii) By considering the random variable

$$g(Y) = \frac{1}{2} \left\{ 1 + (-1)^Y \right\}$$

and its expectation, or otherwise, show that the probability λ that Y is an even number is

$$\lambda = \frac{1}{2} \left\{ 1 + (1 - 2\theta)^n \right\}.$$

- (iii) Find the maximum likelihood estimator $\widehat{\lambda}$ of λ .
- 4. (a) State and prove the Neyman-Pearson Lemma.
 - (b) The observations y_1, \ldots, y_n form a random sample from the distribution with probability density function

$$2\theta y e^{-\theta y^2} \qquad (y > 0),$$

where $\theta > 0$ is unknown.

(i) Show that there is a uniformly most powerful test of size $\leq \gamma$ (0 $< \gamma < 1$) of

$$H_0: heta = rac{1}{2} \quad ext{ against } \quad H_A: heta > rac{1}{2}.$$

(ii) Show that this uniformly most powerful test has critical region

$$R = \{(y_1, \dots, y_n) : t(y_1, \dots, y_n) < c\}$$

where $t(y_1,\ldots,y_n)$ is a function of the observations, to be determined, and

$$F(c) = \gamma,$$

where ${\cal F}$ is the cumulative distribution function of the chi-squared distribution on 2n degrees of freedom.

- **5.** The observations Y_1, \ldots, Y_n (n > 2) are independent and each has a uniform distribution on $[\theta, 2\theta]$, where θ has a prior uniform distribution on [0, a], where a > 0 is a known constant.
 - (a) Show that the posterior probability density of θ is $k \theta^{-n}$ $(b < \theta < c)$, where b and c are functions of the data to be determined, and

$$k = \frac{(n-1)(bc)^{n-1}}{c^{n-1} - b^{n-1}}.$$

(b) Show that if the loss incurred by estimating θ by $\widehat{\theta}$ is $(\theta - \widehat{\theta})^2$, then the Bayes Rule for estimating θ is given by

$$\widehat{\theta} = \frac{(n-1)}{(n-2)} \frac{(bc^{n-1} - b^{n-1}c)}{(c^{n-1} - b^{n-1})}.$$

(c) Show that the Bayes Rule for estimating θ when the loss incurred is now $\left|\theta-\widehat{\theta}\right|$ is given by

$$\widehat{\theta} = \left(\frac{2(bc)^{n-1}}{b^{n-1} + c^{n-1}}\right)^{\frac{1}{n-1}}.$$

DISCRETE DISTRIBUTIONS

$n\theta(1-\theta)$ $(1-\theta+\theta e^t)^n$	n heta(1- heta)	heta u		$\binom{n}{x}\theta^x(1-\theta)^{n-x}$	$n\in\mathbb{Z}^+,\theta\in(0,1)$	$\{0,1,,n\}$	Binomial(n, heta)
$1 - \theta + \theta e^t$	heta(1- heta)	θ		$ heta^x (1- heta)^{1-x}$	$ heta \in (0,1)$	$\{0, 1\}$	Bernoulli(heta)
$\begin{array}{c} \text{MGF} \\ M_X \end{array}$	$\mathrm{E}_{f_{X}}\left[X ight]$ $\mathrm{Var}_{f_{X}}\left[X ight]$	$\mathrm{E}_{f_{X}}\left[X ight]$	$\mathrm{CDF} \\ F_X$	$\begin{array}{c} \text{MASS} \\ \text{FUNCTION} \\ f_X \end{array}$	PARAMETERS	$\frac{\text{RANGE}}{\mathbb{X}}$	

For CONTINUOUS distributions (given on Page 8), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives $f_Y(y)=f_X\begin{pmatrix} y-\mu\\\sigma\end{pmatrix} 1 \qquad F_Y(y)=F_X\begin{pmatrix} y-\mu\\\sigma\end{pmatrix} M_Y(t)=e^{\mu t}M_X(\sigma t)$

$$E_{f_Y}[Y] = \mu + \sigma E_{f_X}[X]$$
 Var_{f_Y}

2	(6 / 5 j)	$(\alpha < 2)$ $(\alpha < 2)$
		g
		$\Gamma(\alpha+\beta) \frac{x^{\alpha-1}(1-x)^{\beta-1}}{2}$
		$(0,1) \qquad \alpha.\beta \in \mathbb{R}^+$
		(0.1)
		ta(lpha,eta)