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1. (a) In a regular estimation problem T is an unbiased estimator of the single unknown
parameter 6. State the relationship between the efficient score Uy and T" which provides
necessary and sufficient conditions for the variance of T' to attain the Cramer-Rao

lower bound for 6.

(b) Yi,...,Y, are independent Poisson observations, each with unknown parameter 6.

(i)

(ii)
(iii)
(iv)

v)

Show that

where Y = 137V
Is Y the minimum variance unbiased estimator of 67 Justify your answer.
Find the Fisher information with respect to ¢, where ¢ = 6(0 + 2).

Show that there does not exist an unbiased estimator of ¢ whose variance attains
the Cramer-Rao lower bound for ¢.

Find a random variable S, a function of Y, which is unbiased for ¢ and show that

40(6 + 1)?
—

varS >

2. (a) State (without proof)

(i)
(ii)

the Neyman Factorisation Theorem.

the Rao-Blackwell Theorem.

(b) Each of the two independent observations X and Y has an exponential distribution
with unknown parameter 6.

(1)
(ii)

(iii)
(iv)

Show that T'= X + Y is a sufficient statistic for § and state the distribution of
T.

Given z > 0,

T > x,
a(T) =

T oNlR

otherwise.

Show that a(T") is unbiased for Fx
X evaluated at z.

—

x), the cumulative distribution function of

It can be shown that the family of distributions of T" is complete. Show that a(7")
is the unique function of T" which is unbiased for F'y(x).

Deduce that a(7") is the minimum variance unbiased estimator of Fx(x).
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3. (a) In a statistical inference problem the maximum likelihood estimator of the unknown
parameter 6 is 6. If A = g(6) is a one-one known function of § show that A = g(0) is
a maximum likelihood estimator of \

(b) The observation Y has a binomial distribution with known index n and unknown
parameter 6 (0 < 6 < 1).

(i) Find the maximum likelihood estimator of 6 and show that its variance is

o(1— 0)

n

(ii) By considering the random variable

o) = 5 {1+ (1))

and its expectation, or otherwise, show that the probability A that Y is an even

number is 1
A= 5{1+(1—29)”}.

(iii) Find the maximum likelihood estimator X of A,

4. (a) State and prove the Neyman-Pearson Lemma.

[ 15y Yn istri [ [
(b) The observations y Y, form a random sample from the distribution with
probability density function

20ye %’ (y > 0),

where 6 > 0 is unknown.

(1) Show that there is a uniformly most powerful test of size < (0 <y < 1) of

1 1
Ho:t9:§ against HA:9>§.

(ii) Show that this uniformly most powerful test has critical region

R={(y1,-sYn) 1 (Y1, -, yn) < c}

where t(yi,...,y,) is a function of the observations, to be determined, and

F(c) =1,

where F' is the cumulative distribution function of the chi-squared distribution on
2n degrees of freedom.
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5. The observations Y1, ...,Y,, (n > 2) are independent and each has a uniform distribution
on [0,26], where 6 has a prior uniform distribution on [0, a], where a > 0 is a known
constant.

(a) Show that the posterior probability density of 6 is k60~ (b < 6 < c¢), where b and ¢
are functions of the data to be determined, and

(n— 1))

Cnfl . bnfl

k:

(b)  Show that if the loss incurred by estimating 6 by 8 is (6 — 5)2, then the Bayes Rule
for estimating 6 is given by

(n—1) (bt =" 1)

Ty @ e

(c) Show that the Bayes Rule for estimating 6 when the loss incurred is now ‘9 — @\‘ is

é\— 2(()0)”71 ﬁ
o bn—l + cn—l ’

given by
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