1. Let $oldsymbol{Y} = \left[Y_1, \ldots, Y_n
ight]^ op$ denote a random sample from distribution

$$f_Y(y) = \begin{cases} (\theta + 2) y^{\theta+1} & \text{for } y \in [0, 1] \\ 0 & \text{for } y \notin [0, 1] \end{cases}$$

where $\theta > -2$.

- (a) Write down the likelihood of Y.
- (b) Find the maximum likelihood estimator of θ , $\widehat{\theta}$.
- (c) Write down the invariance property of maximum likelihood estimators.
- (d) Find the maximum likelihood estimator of $\tau = \log(\theta + 1)$.

2. Let $\boldsymbol{X} = [X_1, \dots, X_n]^{\top}$ denote a random sample from distribution

$$f_X(x) = \begin{cases} \left(\frac{3}{\theta^3}\right)(\theta - x)^2 & \text{for } 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the population mean of this distribution.
- (b) Describe the method of moments procedure, in general terms.
- (c) Find the method of moments estimator of θ , for the distribution given here.
- (d) Find the variance of this estimator.

- 3. Let $U = [U_1, \dots, U_n]^{\top}$ denote a random sample from a Bernoulli distribution with probability of success η .
 - (a) Write down the likelihood of U.
 - (b) Say we assign a prior distribution of η to be given by

$$p(\eta) = \frac{\Gamma(2\alpha)}{\Gamma^2(\alpha)} \eta^{\alpha-1} (1-\eta)^{\alpha-1}, \ \eta \in (0,1),$$

where $\alpha > 0$ is specified.

- (i) Find the posterior distribution of η , given we have observed the random sample II
- (ii) Find the posterior mode of the distribution. For simplicity restrict your solution to the cases $\sum_{i=1}^{n} u_i \neq 0$ or n.
- (iii) Under what loss function is the posterior mode the minimum expected posterior loss estimate of η ?
- (c) The prior assigned is a special case of the Beta distribution given in general for a random variable Q as

$$p(q) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}, \ q \in (0, 1).$$

Plot a rough scetch of this prior for $\beta=\frac{3}{4}\alpha,\,\beta=\alpha$ and $\beta=2\alpha$ when $\alpha=2$. What prior belief in this case have we incorporated in taking $\alpha=\beta$ in the prior for η in part (b)?

M2S2 Page 3 of 7

4. The life-time of a lightbulb V is modelled as following the distribution with density

$$f_V(v) = \theta \exp(-\theta v), \ v > 0.$$

A manufacturing company claims that they make lightbulbs such that $\theta=1$, and a consumer-interest organisation wishes to test whether this is true. A random sample of size n, $\boldsymbol{V}=\left[V_1,\ldots,V_n\right]^T$, is collected to test the hypothesis.

(a) Using moment generating functions (or otherwise) identify the distribution of

$$S_1 = \sum_{i=1}^n V_i.$$

- (b) Verify that the distribution of $S_2=2\theta S_1$ is $\chi^2_{2n}.$
- (c) We wish to test the hypothesis

$$H_0: \ \theta = 1,$$

versus

$$H_1: \theta > 1,$$

based on S_1 , at level significance level α . Describe how to perform this statistical test.

(d) Say we observe $s_1 = 9.891$, when n = 10. Can we reject the null hypothesis at the 5% level, given that

$$\chi^2_{10,0.025} = 3.2470,$$
 $\chi^2_{10,0.05} = 3.9403,$ $\chi^2_{10,0.1} = 4.8652,$ $\chi^2_{20,0.025} = 9.5908,$ $\chi^2_{20,0.05} = 10.8508,$ $\chi^2_{20,0.1} = 12.4426,$

where $\chi^2_{k,\alpha}$ is the $\alpha {\rm th}$ percentile of the χ^2_k distribution.

- 5. A drug trial is conducted where the three first patients are given drug A, the next three patients are given drug B and the final three patients are given no drug at all. After two weeks the blood-pressure of patient i is recorded as Y_i . It is assumed that $Y_i \sim N(\mu_i, \sigma^2), \ i=1,\dots,9,$ independently, and that the mean response of patient i is μ_A if they were administered drug A, μ_B if they were administered drug B, and μ_C if they were given no drug at all.
 - (a) Write down the design matrix X for this set-up.
 - (b) Write down the linear model for \boldsymbol{Y} in terms of $\boldsymbol{X}, \boldsymbol{\beta} = [\mu_A \ \mu_B \ \mu_C]^T$ and random error vector $\boldsymbol{\epsilon}$. Write down the distribution of $\boldsymbol{\epsilon}$.
 - (c) Write down the Gauss-Markov theorem.
 - (d) Given that $\mathbf{y} = [y_1, \dots, y_9]^T$ was observed, estimate the parameter vector $\boldsymbol{\beta}$ such that it is optimal in the class of estimators encompassed by the Gauss-Markov theorem.
 - (e) Find $\mathrm{Var}\left(\widehat{\boldsymbol{\beta}}\right)$. Are the estimates of μ_A and μ_B independent? Please give your reasoning carefully.

M2S2 Page 5 of 7

	F $E_{f_X}[X]$ Var $_{f_X}[X]$ MGF	M_X	$\theta \qquad \qquad \theta(1-\theta) \qquad \qquad 1-\theta+\theta e^t$	$n\theta$ $n\theta(1-\theta)$ $(1-\theta+\theta e^t)^n$	$\lambda \qquad \qquad \lambda \qquad \exp \left\{ \lambda \left(e^{t} - 1 \right) \right\}$	$\frac{1}{\theta}$	$\frac{n}{\theta}$ $\frac{n(1-\theta)}{\theta^2}$ $\left(\frac{\theta e^t}{1-e^t(1-\theta)}\right)^n$	$\frac{n(1-\theta)}{\theta} \qquad \frac{n(1-\theta)}{\theta^2} \qquad \left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$
DISCRETE DISTRIBUTIONS	MASS FUNCTION	f_X F_X	$\theta^x (1-\theta)^{1-x}$	$\binom{n}{x} heta^x (1- heta)^{n-x}$	$\frac{e^{-\lambda}\lambda x}{x!}$	$(1-\theta)^{x-1}\theta 1 - (1-\theta)^x$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$
DISC	PARAMETERS		$\theta \in (0,1)$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	λ∈ ਸ਼+	$\theta \in (0,1)$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$n\in\mathbb{Z}^+,\theta\in(0,1)$
	RANGE	×	$Ui(heta)$ $\{0,1\}$	$(al(n,\theta))$ $\{0,1,,n\}$	<i>ι</i> (λ) {0, 1, 2,}	$ric(\theta)$ $\{1, 2,\}$	$NegBinomial(n, \theta)$ $\{n, n+1,\}$	$\{0,1,2,\}$
			Bernoulli(heta)	$Binomial(n, \theta)$	$Poisson(\lambda)$	$egin{aligned} Geometric(heta) \end{aligned}$	NegBin	or

For CONTINUOUS distributions (given on Page 7), define the ${\bf GAMMA~FUNCTION}$

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y = \mu + \sigma X$ gives

$$f_{Y}(y) = f_{X}\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_{Y}(y) = F_{X}\left(\frac{y-\mu}{\sigma}\right) \qquad M_{Y}(t) = e^{\mu t}M_{X}(\sigma t) \qquad E_{f_{Y}}\left[Y\right] = \mu + \sigma E_{f_{X}}\left[X\right]$$

 $\operatorname{Var}_{f_Y}[Y] = \sigma^2 \operatorname{Var}_{f_X}[X]$

M2S2 Page 6 of 7

			CONTINUOUS DISTRIBUTIONS	RIBUTIONS			
	RANGE	PARAMETERS	PDF	CDF	$\mathrm{E}_{f_{X}}\left[X ight]$	$\operatorname{Var}_{f_X}[X]$	MGF
	×		f_X	F_X			M_X
$Uniform(\alpha,\beta)$ (standard model $\alpha=0,\beta=1$)	(α,β)	$lpha < eta \in \mathbb{R}$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t \left(\beta - \alpha\right)}$
$Exponential(\lambda)$ (standard model $\lambda = 1$)	+ 21	γ ∈ ℝ ⁺	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	<i><</i>	$\frac{1}{\lambda^2}$	$\left(rac{\lambda}{\lambda-t} ight)$
$Gamma(\alpha,\beta)$ (standard model $\beta=1$)	- NR +	$lpha,eta\in\mathbb{R}^+$	$\frac{\beta^{\alpha}}{\overline{\Gamma(\alpha)}} x^{\alpha-1} e^{-\beta x}$		$\frac{\omega}{\beta}$	$\frac{\partial}{\partial z}$	$\left(rac{eta}{eta-t} ight)^lpha$
Weibull(lpha,eta) (standard model $eta=1$)	+	$\alpha, \beta \in \mathbb{R}^+$	$lphaeta x^{lpha-1}e^{-eta x^{lpha}}$	$1 - e^{-\beta x^{\alpha}}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+2\alpha^{-1}\right)-\Gamma\left(1+\alpha^{-1}\right)^{2}}{\beta^{2/\alpha}}$	
$Normal(\mu, \sigma^2)$ (standard model $\mu = 0, \sigma = 1)$	É	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		π	σ^2	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$
Student(u)	丝	v ∈ ℝ+	$\Gamma\left(\frac{\nu+1}{2}\right) \\ \Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi\nu} \left\{1 + \frac{x^2}{\nu}\right\}^{(\nu+1)/2}$		0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$	
Pareto(heta, lpha)	+ 21	$ heta, lpha \in \mathbb{R}^+$	$\frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}}$	$1 - \left(rac{ heta}{ heta + x} ight)^lpha$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$rac{lpha heta^2}{(lpha-1)(lpha-2)}$ (if $lpha > 2$)	
Beta(lpha,eta)	(0,1)	$lpha,eta\in\mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	