1. Let $\boldsymbol{Y}=\left[Y_{1}, \ldots, Y_{n}\right]^{\top}$ denote a random sample from distribution

$$
f_{Y}(y)=\left\{\begin{array}{lll}
(\theta+2) y^{\theta+1} & \text { for } & y \in[0,1] \\
0 & \text { for } & y \notin[0,1]
\end{array}\right.
$$

where $\theta>-2$.
(a) Write down the likelihood of \boldsymbol{Y}.
(b) Find the maximum likelihood estimator of $\theta, \widehat{\theta}$.
(c) Write down the invariance property of maximum likelihood estimators.
(d) Find the maximum likelihood estimator of $\tau=\log (\theta+1)$.
2. Let $\boldsymbol{X}=\left[X_{1}, \ldots, X_{n}\right]^{\top}$ denote a random sample from distribution

$$
f_{X}(x)= \begin{cases}\left(\frac{3}{\theta^{3}}\right)(\theta-x)^{2} & \text { for } 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the population mean of this distribution.
(b) Describe the method of moments procedure, in general terms.
(c) Find the method of moments estimator of θ, for the distribution given here.
(d) Find the variance of this estimator.
3. Let $\boldsymbol{U}=\left[U_{1}, \ldots, U_{n}\right]^{\top}$ denote a random sample from a Bernoulli distribution with probability of success η.
(a) Write down the likelihood of \boldsymbol{U}.
(b) Say we assign a prior distribution of η to be given by

$$
p(\eta)=\frac{\Gamma(2 \alpha)}{\Gamma^{2}(\alpha)} \eta^{\alpha-1}(1-\eta)^{\alpha-1}, \eta \in(0,1)
$$

where $\alpha>0$ is specified.
(i) Find the posterior distribution of η, given we have observed the random sample U.
(ii) Find the posterior mode of the distribution. For simplicity restrict your solution to the cases $\sum_{i=1}^{n} u_{i} \neq 0$ or n.
(iii) Under what loss function is the posterior mode the minimum expected posterior loss estimate of η ?
(c) The prior assigned is a special case of the Beta distribution given in general for a random variable Q as

$$
p(q)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} q^{\alpha-1}(1-q)^{\beta-1}, q \in(0,1)
$$

Plot a rough scetch of this prior for $\beta=\frac{3}{4} \alpha, \beta=\alpha$ and $\beta=2 \alpha$ when $\alpha=2$.
What prior belief in this case have we incorporated in taking $\alpha=\beta$ in the prior for η in part (b)?
4. The life-time of a lightbulb V is modelled as following the distribution with density

$$
f_{V}(v)=\theta \exp (-\theta v), v>0
$$

A manufacturing company claims that they make lightbulbs such that $\theta=1$, and a consumer-interest organisation wishes to test whether this is true. A random sample of size $n, \boldsymbol{V}=\left[V_{1}, \ldots, V_{n}\right]^{T}$, is collected to test the hypothesis.
(a) Using moment generating functions (or otherwise) identify the distribution of

$$
S_{1}=\sum_{i=1}^{n} V_{i} .
$$

(b) Verify that the distribution of $S_{2}=2 \theta S_{1}$ is $\chi_{2 n}^{2}$.
(c) We wish to test the hypothesis

$$
H_{0}: \theta=1,
$$

versus

$$
H_{1}: \theta>1,
$$

based on S_{1}, at level significance level α. Describe how to perform this statistical test.
(d) Say we observe $s_{1}=9.891$, when $n=10$. Can we reject the null hypothesis at the 5% level, given that

$$
\begin{array}{lll}
\chi_{10,0.025}^{2}=3.2470, & \chi_{10,0.05}^{2}=3.9403, & \chi_{10,0.1}^{2}=4.8652, \\
\chi_{20,0.025}^{2}=9.5908, & \chi_{20,0.05}^{2}=10.8508, & \chi_{20,0.1}^{2}=12.4426,
\end{array}
$$

where $\chi_{k, \alpha}^{2}$ is the α th percentile of the χ_{k}^{2} distribution.
5. A drug trial is conducted where the three first patients are given drug A, the next three patients are given drug B and the final three patients are given no drug at all. After two weeks the blood-pressure of patient i is recorded as Y_{i}. It is assumed that $Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), i=1, \ldots, 9$, independently, and that the mean response of patient i is μ_{A} if they were administered drug A, μ_{B} if they were administered drug B, and μ_{C} if they were given no drug at all.
(a) Write down the design matrix \boldsymbol{X} for this set-up.
(b) Write down the linear model for \boldsymbol{Y} in terms of $\boldsymbol{X}, \boldsymbol{\beta}=\left[\mu_{A} \mu_{B} \mu_{C}\right]^{T}$ and random error vector $\boldsymbol{\epsilon}$. Write down the distribution of $\boldsymbol{\epsilon}$.
(c) Write down the Gauss-Markov theorem.
(d) Given that $\boldsymbol{y}=\left[y_{1}, \ldots, y_{9}\right]^{T}$ was observed, estimate the parameter vector $\boldsymbol{\beta}$ such that it is optimal in the class of estimators encompassed by the Gauss-Markov theorem.
(e) Find $\operatorname{Var}(\widehat{\boldsymbol{\beta}})$. Are the estimates of μ_{A} and μ_{B} independent? Please give your reasoning carefully.

DISCRETE DISTRIBUTIONS							
	$\begin{gathered} \text { RANGE } \\ \mathbb{X} \end{gathered}$	PARAMETERS	MASS FUNCTION f_{X}	$\begin{gathered} \mathrm{CDF} \\ F_{X} \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{gathered} \mathrm{MGF} \\ M_{X} \end{gathered}$
Bernoulli (θ)	\{0, 1\}	$\theta \in(0,1)$	$\theta^{x}(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^{t}$
$\operatorname{Binomial}(n, \theta)$	$\{0,1, \ldots, n\}$	$n \in \mathbb{Z}^{+}, \theta \in(0,1)$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$		$n \theta$	$n \theta(1-\theta)$	$\left(1-\theta+\theta e^{t}\right)^{n}$
Poisson(λ)	$\{0,1,2, \ldots\}$	$\lambda \in \mathbb{R}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$		λ	λ	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(θ)	$\{1,2, \ldots\}$	$\theta \in(0,1)$	$(1-\theta)^{x-1} \theta$	$1-(1-\theta)^{x}$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^{2}}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
$\text { NegBinomial }(n, \theta)$ or	$\begin{aligned} & \{n, n+1, \ldots\} \\ & \{0,1,2, \ldots\} \end{aligned}$	$\begin{aligned} & n \in \mathbb{Z}^{+}, \theta \in(0,1) \\ & n \in \mathbb{Z}^{+}, \theta \in(0,1) \end{aligned}$	$\begin{aligned} & \binom{x-1}{n-1} \theta^{n}(1-\theta)^{x-n} \\ & \binom{n+x-1}{x} \theta^{n}(1-\theta)^{x} \end{aligned}$		$\frac{n}{\theta}$ $\frac{n(1-\theta)}{\theta}$	$\begin{aligned} & \frac{n(1-\theta)}{\theta^{2}} \\ & \frac{n(1-\theta)}{\theta^{2}} \end{aligned}$	$\begin{aligned} & \left(\frac{\theta e^{t}}{1-e^{t}(1-\theta)}\right)^{n} \\ & \left(\frac{\theta}{1-e^{t}(1-\theta)}\right)^{n} \end{aligned}$

For CONTINUOUS distributions (given on Page 7), define the GAMMA FUNCTION
$\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$
and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives
$f_{Y}(y)=f_{X}\left(\frac{y-\mu}{\sigma}\right) \frac{1}{\sigma} \quad F_{Y}(y)=F_{X}\left(\frac{y-\mu}{\sigma}\right)$
$\mathrm{E}_{f_{Y}}[Y]=\mu+\sigma \mathrm{E}_{f_{X}}[X]$
$M_{Y}(t)=e^{\mu t} M_{X}(\sigma t)$

CONTINUOUS DISTRIBUTIONS							
	$\begin{gathered} \hline \text { RANGE } \\ \mathbb{X} \end{gathered}$	PARAMETERS	$\begin{gathered} \hline \text { PDF } \\ f_{X} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CDF } \\ F_{X} \\ \hline \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{gathered} \hline \text { MGF } \\ M_{X} \end{gathered}$
Uniform (α, β) (standard model $\alpha=0, \beta=1$)	(α, β)	$\alpha<\beta \in \mathbb{R}$	$\frac{1}{\beta-\alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta-\alpha)^{2}}{12}$	$\frac{e^{\beta t}-e^{\alpha t}}{t(\beta-\alpha)}$
Exponential (λ) (standard model $\lambda=1$)	\mathbb{R}^{+}	$\lambda \in \mathbb{R}^{+}$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\left(\frac{\lambda}{\lambda-t}\right)$
$\operatorname{Gamma}(\alpha, \beta)$ (standard model $\beta=1$)	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$		$\bar{\alpha}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{\beta}{\beta-t}\right)^{2}$
Weibull (α, β) (standard model $\beta=1$)	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$1-e^{-\beta x^{\alpha}}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma\left(1+2 \alpha^{-1}\right)-\Gamma\left(1+\alpha^{-1}\right)^{2}}{\beta^{2 / \alpha}}$	
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ (standard model $\mu=0, \sigma=1$)	\mathbb{R}	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$		μ	σ^{2}	$\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\}$
Student(ν)	\mathbb{R}	$\nu \in \mathbb{R}^{+}$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}\left\{1+\frac{x^{2}}{\nu}\right\}^{(\nu+1) / 2}}$		$0 \quad$ (if $\nu>1)$	$\frac{\nu}{\nu-2} \quad($ if $\nu>2)$	
$\operatorname{Pareto}(\theta, \alpha)$	\mathbb{R}^{+}	$\theta, \alpha \in \mathbb{R}^{+}$	$\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1-\left(\frac{\theta}{\theta+x}\right)^{\text {a }}$	$\begin{aligned} & \frac{\theta}{\alpha-1} \\ & (\text { if } \alpha>1) \end{aligned}$	$\begin{aligned} & \frac{\alpha \theta^{2}}{(\alpha-1)(\alpha-2)} \\ & (\text { if } \alpha>2) \end{aligned}$	
$\operatorname{Beta}(\alpha, \beta)$	$(0,1)$	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

