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1. (a) A coin shows heads with probability p, independently on each toss. Let πn be the

probability that the number of heads after n tosses is even. Show carefully that

πn+1 = (1 − p)πn + p(1 − πn), n ≥ 1, and hence derive πn explicitly. [The number
0 is even.]

(b) Explain what is meant by the indicator function IA of an event A.

Let Ii be the indicator function of the event Ai, 1 ≤ i ≤ n, and let N =
∑n
1 Ii be the

number of values of i such that Ai occurs. Show that E[N ] =
∑
i pi, where pi = P (Ai),

and find var[N ] in terms of the quantities pij = P (Ai ∩ Aj).

(c) A fair die has two green faces, two red faces and two blue faces, and the die is thrown

once. Let X = 1 if a green face is uppermost, X = 0 otherwise, and let Y = 1 if a blue

face is uppermost, Y = 0 otherwise.

Find cov[X,Y ].

2. (a) The random variable X is uniformly distributed on the interval [0, 1]. Find the cumulative

distribution function and the probability density function of Y , where

Y =
2X

1−X
.

(b) Let X and Y be independent random variables with respective density functions fX and

fY .

(i) Show that Z = Y/X has density function

fZ(z) =

∫ ∞

−∞
fX(x)fY (xz)|x|dx.

(ii) Deduce that T = tan−1(Y/X) is uniformly distributed on (−π
2
, π
2
) if and only if

∫ ∞

−∞
fX(x)fY (xz)|x|dx =

1

π(1 + z2)
, z ∈ R.

(iii) Verify that the condition in (ii) holds if X and Y both have the normal distribution

with mean 0 and variance σ2 > 0.
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3. (a) The President of Statistica relaxes by fishing in the clear waters of Lake Tchebychev.

The number of fish that she catches is a Poisson variable with parameter λ. The weight

of each fish in Lake Tchebychev is an independent normally distributed random variable

with mean μ and variance σ2. [Since μ is much larger than σ, fish of negative weight are

rare, and much prized by gourmets.] Let Z be the total weight of the President’s catch.

Compute E[Z] and E[Z2].

Show, quoting any results you need, that the probability that the President’s catch weighs

less than λμ/2 is less than 4(μ2 + σ2)/(λμ2).

(b) Conditional on Y = y, the random variable X has the Binomial(n, y) distribution, and

the marginal distribution of Y is Beta(α, β).

What is the marginal probability mass function of X? What is the conditional distribution

of Y , given X = x?

4. (a) Let U be uniformly distributed on [0, 1] and let X = {− 1
β
loge(U)}

1/α.

Find the probability density function of X, and calculate the rth moment of X, E[Xr],

r ≥ 1.

(b) A random variable X has probability density function fX(x) =
1
2
exp(−|x|), x ∈ R.

Find the moment generating function of X, and calculate var[X].

The random variables X1, X2, . . . are independent, identically distributed, with the same

distribution as X. Define Sn = n
−1/2

∑n
i=1Xi.

Find the moment generating function of Sn and show that, as n → ∞, it converges to
the moment generating function of a random variable Y , which you should identify.

Explain briefly how the result that Sn converges in distribution to Y could alternatively

be deduced from the Central Limit Theorem.
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5. (a) Let X1, X2, X3, X4 be independent, identically distributed N(0, 1) random variables.

Identify the following distributions:

(i) The distribution of

Y1 = 2X1 − 3X2 +X3;

(ii) The distribution of

Y2 = X1/X2;

(iii) The distribution of

Y3 =
X21 +X

2
2

2X23
;

(iv) The distribution of

Y4 =

√
3X4√

(X21 +X
2
2 +X

2
3 )
;

(v) The joint distribution of

Y5 = X1 +X2 and Y6 = 2X1 +X2.

(vi) The conditional distribution of Y6, given Y5 = y5.

(b) Let X1, . . . , Xn be independent, identically distributed N(μ, σ
2), where both μ and σ2

are unknown.

State, without proof, the joint distribution of the random variables X̄ = n−1
∑n
i=1Xi

and S2 = (n− 1)−1
∑n
i=1(Xi − X̄)

2.

Explain clearly how the joint distribution allows construction of an appropriate test

statistic for testing the null hypothesis H0 : μ = μ0 against the alternative hypothesis

H1 : μ 6= μ0. Describe in detail how you would carry out the test.

How would you test the hypothesis H0 : σ
2 = σ20 against the alternative H1 : σ

2 6= σ20,
if μ were known?
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