Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M2S1

PROBABILITY AND STATISTICS II

Date: Tuesday, 8th May 2007

Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- Statistical tables will not be available.
- A Formula Sheet is provided on pages 5-6.

- 1. (a) A coin shows heads with probability p, independently on each toss. Let π_n be the probability that the number of heads after n tosses is even. Show carefully that $\pi_{n+1} = (1-p)\pi_n + p(1-\pi_n), n \ge 1$, and hence derive π_n explicitly. [The number 0 is even.]
 - (b) Explain what is meant by the *indicator function* I_A of an event A.
 Let I_i be the indicator function of the event A_i, 1 ≤ i ≤ n, and let N = ∑₁ⁿ I_i be the number of values of i such that A_i occurs. Show that E[N] = ∑_i p_i, where p_i = P(A_i), and find var[N] in terms of the quantities p_{ij} = P(A_i ∩ A_j).
 - (c) A fair die has two green faces, two red faces and two blue faces, and the die is thrown once. Let X = 1 if a green face is uppermost, X = 0 otherwise, and let Y = 1 if a blue face is uppermost, Y = 0 otherwise.
 Find cov[X, Y].
- 2. (a) The random variable X is uniformly distributed on the interval [0,1]. Find the cumulative distribution function and the probability density function of Y, where

$$Y = \frac{2X}{1 - X}.$$

- (b) Let X and Y be independent random variables with respective density functions f_X and f_Y .
 - (i) Show that Z = Y/X has density function

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(xz) |x| dx.$$

(ii) Deduce that $T = \tan^{-1}(Y/X)$ is uniformly distributed on $(-\frac{\pi}{2}, \frac{\pi}{2})$ if and only if

$$\int_{-\infty}^{\infty} f_X(x) f_Y(xz) |x| dx = \frac{1}{\pi(1+z^2)}, \ z \in \mathbb{R}.$$

(iii) Verify that the condition in (ii) holds if X and Y both have the normal distribution with mean 0 and variance $\sigma^2 > 0$.

3. (a) The President of Statistica relaxes by fishing in the clear waters of Lake Tchebychev. The number of fish that she catches is a Poisson variable with parameter λ. The weight of each fish in Lake Tchebychev is an independent normally distributed random variable with mean µ and variance σ². [Since µ is much larger than σ, fish of negative weight are rare, and much prized by gournets.] Let Z be the total weight of the President's catch. Compute E[Z] and E[Z²].
Show, quoting any results you need, that the probability that the President's catch weights

Show, quoting any results you need, that the probability that the President's catch weighs less than $\lambda \mu/2$ is less than $4(\mu^2 + \sigma^2)/(\lambda \mu^2)$.

(b) Conditional on Y = y, the random variable X has the Binomial(n, y) distribution, and the marginal distribution of Y is Beta(α, β).
What is the marginal probability mass function of X? What is the conditional distribution of Y, given X = x?

- 4. (a) Let U be uniformly distributed on [0,1] and let $X = \{-\frac{1}{\beta}\log_e(U)\}^{1/\alpha}$. Find the probability density function of X, and calculate the rth moment of X, $E[X^r]$, $r \ge 1$.
 - (b) A random variable X has probability density function f_X(x) = ¹/₂ exp(-|x|), x ∈ ℝ. Find the moment generating function of X, and calculate var[X]. The random variables X₁, X₂,... are independent, identically distributed, with the same distribution as X. Define S_n = n^{-1/2} ∑ⁿ_{i=1} X_i. Find the moment generating function of S_n and show that, as n → ∞, it converges to the moment generating function of a random variable Y, which you should identify. Explain briefly how the result that S_n converges in distribution to Y could alternatively be deduced from the Central Limit Theorem.

- 5. (a) Let X_1, X_2, X_3, X_4 be independent, identically distributed N(0, 1) random variables. Identify the following distributions:
 - (i) The distribution of

$$Y_1 = 2X_1 - 3X_2 + X_3;$$

 $Y_2 = X_1 / X_2;$

(ii) The distribution of

$$Y_3 = \frac{X_1^2 + X_2^2}{2X_3^2};$$

$$Y_4 = \frac{\sqrt{3X_4}}{\sqrt{(X_1^2 + X_2^2 + X_3^2)}};$$

(v) The *joint* distribution of

$$Y_5 = X_1 + X_2$$
 and $Y_6 = 2X_1 + X_2$.

- (vi) The *conditional* distribution of Y_6 , given $Y_5 = y_5$.
- (b) Let X_1, \ldots, X_n be independent, identically distributed $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.

State, without proof, the joint distribution of the random variables $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Explain clearly how the joint distribution allows construction of an appropriate test statistic for testing the null hypothesis $H_0: \mu = \mu_0$ against the alternative hypothesis $H_1: \mu \neq \mu_0$. Describe in detail how you would carry out the test.

How would you test the hypothesis $H_0: \sigma^2 = \sigma_0^2$ against the alternative $H_1: \sigma^2 \neq \sigma_0^2$, if μ were known?

		DISC	CRETE DISTRIBUTIONS				
	RANGE	PARAMETERS	MASS FUNCTION	CDF	$E_{f_X}\left[X ight]$	$Var_{f_X}\left[X ight]$	MGF
	⋈		f_X	F_X			M_X
Bernoulli(heta)	$\{0, 1\}$	$ heta\in(0,1)$	$ heta^x(1- heta)^{1-x}$		θ	heta(1- heta)	$1 - heta + heta e^t$
Binomial(n, heta)	$\{0,1,,n\}$	$n\in\mathbb{Z}^+,\theta\in(0,1)$	$\binom{n}{x} heta^x(1- heta)^{n-x}$		n heta	n heta(1- heta)	$ig(1- heta+ heta e^tig)^n$
$Poisson(\lambda)$	$\{0, 1, 2,\}$	$\lambda\in\mathbb{R}^+$	$\frac{e^{-\lambda}\lambda^x}{x!}$		X	X	$\exp\left\{\lambda\left(e^t-1\right)\right\}$
Geometric(heta)	$\{1, 2,\}$	$ heta\in(0,1)$	$(1- heta)^{x-1} heta$	$1-(1- heta)^x$	$\frac{1}{\theta}$	$\overline{ \left(egin{array}{c} 1 - heta ight) } \ heta^2 \ heta^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$rac{ heta e^t}{1-e^t(1- heta)}$
$NegBinomial(n, \theta)$	$\{n,n+1,\}$	$n\in\mathbb{Z}^+, heta\in(0,1)$	$egin{pmatrix} x-1\ n-1 \end{pmatrix} heta^n (1- heta)^{x-n}$		$\frac{\theta}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta e^t}{1-e^t(1-\theta)}\right)^n$
o	$\{0, 1, 2,\}$	$n\in\mathbb{Z}^+, heta\in(0,1)$	$\binom{n+x-1}{x} heta^n(1- heta)^x$		$\frac{n(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

 $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right) \qquad M_Y(t) = e^{\mu t}M_X(\sigma t) \qquad \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right]$$

 $\operatorname{Var}_{f_Y}\left[Y\right] = \sigma^2 \operatorname{Var}_{f_X}\left[X\right]$

			CONTINUOUS DISTI	RIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}\left[X ight]$	$Var_{f_X}\left[X ight]$	MGF
	\mathbb{X}		f_X	F_X			M_X
Uniform(lpha,eta) (standard model $lpha=0,eta=1)$	(lpha,eta)	$\alpha < \beta \in \mathbb{R}$	$\overline{eta-lpha}$	$rac{x-lpha}{eta-lpha}$	$rac{(lpha+eta)}{2}$	$\overline{\left(eta-lpha ight)^2}$ 12	$\frac{e^{\beta t} - e^{\alpha t}}{t\left(\beta - \alpha\right)}$
$Exponential(\lambda)$ (standard model $\lambda=1)$	+ 2	$\lambda\in\mathbb{R}^+$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (standard model $eta=1)$	+	$\alpha,\beta\in\mathbb{R}^+$	$rac{eta^lpha}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$		$\beta \beta$	β^2	$\left(rac{eta}{eta-t} ight)^{lpha}$
Weibull(lpha,eta) (standard model $eta=1)$	+ 2	$lpha,eta\in\mathbb{R}^+$	$lphaeta x^{lpha-1}e^{-eta x^{lpha}}$	$1-e^{-eta x^{lpha}}$	$\frac{\Gamma\left(1+1/\alpha\right)}{\beta^{1/\alpha}}$	$rac{\Gamma\left(1+2/lpha ight)-\Gamma\left(1+1/lpha ight)^{2}}{eta^{2/lpha}}$	
$Normal(\mu,\sigma^2)$ (standard model $\mu=0,\sigma=1)$	跑	$\mu\in\mathbb{R},\sigma\in\mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		π	σ^2	$e^{\{\mu t + \sigma^2 t^2/2\}}$
Student(u)	Ř	$ u \in \mathbb{R}^+ $	$rac{(\pi u)^{-rac{1}{2}}\Gamma\left(rac{ u+1}{2} ight)}{\Gamma\left(rac{ u}{2} ight)\left\{1+rac{x^2}{ u} ight\}^{(u+1)/2}}$		0 (if $\nu > 1$)	$rac{ u}{ u-2}$ (if $ u>2$)	
Pareto(heta, lpha)	玉 - 2	$ heta, lpha \in \mathbb{R}^+$	$rac{lpha heta ^lpha}{(heta + x)^{lpha + 1}}$	$1 - \left(rac{ heta}{ heta + x} ight)^lpha$	$rac{ heta}{lpha-1}$ (if $lpha>1$)	$rac{lpha heta^2}{(lpha-1)(lpha-2)}$ (if $lpha > 2)$	
Beta(lpha,eta)	(0, 1)	$\alpha,\beta\in\mathbb{R}^+$	$rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	