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1. (a) Discrete random variable X has range X ≡ {0, 1, 2, . . .} and cumulative distribution
function (cdf) FX specified by

FX(x) =
3x+1 − kx+1

3x+1
x = 0, 1, 2, . . .

and FX(x) = 0 for all other integers x, with the usual right continuous step function

behaviour elsewhere, where k is a constant.

By noting that FX can be written

FX(x) = 1− θ
x+1 x = 0, 1, 2, ...

for some θ, and thus is a modified version of a standard distribution, find

(i) the range of values of k that yield a proper probability distribution for X.

(ii) the probability mass function (pmf) of X, denoted fX .

(iii) the moment generating function of X, MX(t).

(b) Suppose thatX1 andX2 are independent random variables that have the same probability

distribution as X from part (a). Let Y = X1 +X2, and Z = max{X1, X2}.

Find

(i) the expectation of Y ,

(ii) the mgf of Y ,

(iii) the cdf of Z.
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2. (a) Suppose that U is a continuous random variable, and U ∼ Uniform(0, 1). Let random
variable X be defined in terms of U by

X = sin(πU/2).

Find

(i) the probability density function (pdf) of X, denoted fX ,

(ii) the expectation EfX [X],

(iii) the expected area of the (random) triangle with corners

(0, 0), (U,U/2), (U,−U/2).

(b) The joinf pdf of continuous random variables Y and Z is specified via the conditional

distribution of Y given Z = z, and the marginal distribution for Z. Specifically,

Y |Z = z ∼ Uniform(0,
√
z)

Z ∼ Gamma(3/2, λ)

for parameter λ > 0.

Find the marginal pdf for Y , denoted fY .

Hint: consider the support of the conditional pdf fY |Z(y|z) carefully.
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3. (a) Suppose that X1 and X2 are independent and identically distributed continuous random

variables with cumulative distribution function

FX(x) =
x

1 + x
x > 0

with FX(x) = 0 for x ≤ 0.

Show that

P [X1X2 < 1] = P [X1 < 1].

(b) Suppose that Z1 and Z2 are independent random variables, where Z1 ∼ Normal(0, 1)
and Z2 is the absolute value of a Normal(0, 1) random variable, so that

fZ2(z) =

√
2

π
exp{−z2/2} z > 0

and zero otherwise . Let

Y1 =
Z1√

Z21 + Z
2
2

Y2 =
√
Z21 + Z

2
2 .

Find the marginal probability density function of Y1.

Are Y1 and Y2 independent ? Justify your answer.
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4. (a) Discrete random variables X1 and X2 have joint probability mass function specified by

the following table:
X1

0 1 2

0 p 2p 0

X2 1 p p p

2 0 0 4p

(i) Find the value of the constant p.

(ii) Find the covariance between X1 and X2.

(b) Suppose that Z1, Z2 and Z3 are independent random variables each having a

Normal(0, 1) distribution. Suppose that Y1, Y2 and Y3 are defined in terms of Z1,

Z2 and Z3 by the equations

Y1 = Z1 + Z2

Y2 = 2Z1 + Z3

Y3 = Z1 + Z2 − 2Z3.

Find the variance/covariance matrix for the random variables (Y1, Y2, Y3).

Are Y2 and Y3 independent random variables ? Justify your answer.
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5. (a) Suppose X1, . . . , Xn, . . . is a sequence of random variables with the cumulative

distribution function of Xn defined by

FXn(x) =

(
1

1 + e−x

)n
x ∈ R.

Find the limiting distributions as n −→∞ (if they exist) of the random variables

(i) Xn,

(ii) Un = Xn − log n.

Using the result in (ii), find an approximation to the probability

P [Xn > k]

for large n.

(b) In a dice rolling game, a fair die (with all six scores having equal probability) is rolled

repeatedly and independently under identical conditions. On each roll, the player wins

six points if the score is a 6, loses one point if the score is either 2,3,4 or 5, and loses

two points if the score is 1.

Let Tn denote the points total obtained after n rolls of the die. The player begins the

game with a points total equal to zero, that is T0 = 0.

(i) Find the expectation and variance of the points total after 100 rolls of the die.

(ii) Find an approximation to the distribution of the points total after n rolls, for large

n.

(iii) Describe the behaviour of the sample mean points total, Mn = Tn/n, as n −→∞.
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