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1.  (a) Discrete random variable X has range X = {0,1,2,...} and cumulative distribution
function (cdf) Fx specified by

3m+1___km+1

Fx(x) = x=0,1,2,...

3x+1

and Fx(z) = 0 for all other integers x, with the usual right continuous step function
behaviour elsewhere, where k is a constant.

By noting that F'x can be written
Fx(z)=1-60"""  1=0,1,2,..

for some 6, and thus is a modified version of a standard distribution, find

(i) the range of values of k that yield a proper probability distribution for X.
(i) the probability mass function (pmf) of X, denoted fx.
(iii) the moment generating function of X, Mx (t).

(b) Suppose that X; and X5 are independent random variables that have the same probability
distribution as X from part (a). Let Y = X; + X5, and Z = max{X;, X, }.

Find

(i) the expectation of Y,
(i) the mgf of Y,
(iii) the cdf of Z.
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2. (a) Suppose that U is a continuous random variable, and U ~ Uniform(0,1). Let random
variable X be defined in terms of U by

X =sin(nU/2).
Find
(i) the probability density function (pdf) of X, denoted fy,

(i) the expectation Ey, [X],

(iii) the expected area of the (random) triangle with corners

(0,0),(U,U/2),(U,-U/2).

(b) The joinf pdf of continuous random variables Y and Z is specified via the conditional
distribution of Y given Z = z, and the marginal distribution for Z. Specifically,

Y|Z =2 ~ Uniform(0,v/2)
Z ~ Gamma(3/2,))

for parameter A > 0.

Find the marginal pdf for Y, denoted fy.

Hint: consider the support of the conditional pdf fy|z(y|z) carefully.
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3. (a) Suppose that X; and X, are independent and identically distributed continuous random
variables with cumulative distribution function

with F'y(z) =0 for z < 0.

Show that

(b) Suppose that Z; and Z, are independent random variables, where Z; ~ Normal(0, 1)
and Z is the absolute value of a Normal(0,1) random variable, so that

f2,(2) = \/geXp{—zW} 2>0

and zero otherwise . Let
A /
VY L

Find the marginal probability density function of Y.

Are Y] and Y5 independent 7 Justify your answer.
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4. (a) Discrete random variables X; and X, have joint probability mass function specified by

the following table:

X1
0 1 2
p 2p 0
X 1ip p p
0 0 4p

(i) Find the value of the constant p.

(ii) Find the covariance between X; and Xo.

(b) Suppose that Z;, Zs and Z3 are independent random variables each having a
Normal(0,1) distribution. Suppose that Y7, Y5 and Y3 are defined in terms of Z,
Z5 and Z3 by the equations

Y, = Z1+ 2%
Yo = 22+ Z;3
Ys = Z1+ 2y, —27;5.

Find the variance/covariance matrix for the random variables (Y7,Y5,Y3).

Are Y5 and Y3 independent random variables 7 Justify your answer.
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5. (a) Suppose Xi,...,X,,... is a sequence of random variables with the cumulative
distribution function of X,, defined by

1 n
Fx, (x) = (1—1—6—9’) z € R.

Find the limiting distributions as n — oo (if they exist) of the random variables
(i) Xn,
(i) U, = X, — logn.

Using the result in (ii), find an approximation to the probability
P[X, > k|

for large n.

(b) In a dice rolling game, a fair die (with all six scores having equal probability) is rolled
repeatedly and independently under identical conditions. On each roll, the player wins
six points if the score is a 6, loses one point if the score is either 2,3,4 or 5, and loses
two points if the score is 1.

Let 7T, denote the points total obtained after n rolls of the die. The player begins the
game with a points total equal to zero, that is Ty = 0.

(i) Find the expectation and variance of the points total after 100 rolls of the die.

(ii) Find an approximation to the distribution of the points total after n rolls, for large
n.

(iii) Describe the behaviour of the sample mean points total, M,, = T,,/n, as n — oo.
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