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nearly complete answers.

Calculators may not be used.
Statistical tables will not be available.

Formula sheets are included on pages 7 & 8

(© 2004 University of London M2S1 Page 1 of 8



1. (a) Suppose that U ~ Uniform(0,1), so that
Fy(u)=u O<u<l

with Fyy(u) =0 for u < 0 and Fy(u) =1 for u > 1.
(1) Find the probability density function (pdf), fx, of random variable X defined by

U
X=In(-—nr
(i)

fx (x) = fx (—x)

and show that, for z € R,

(ii) Find the expectation of X.

(iii) By using the substitution
1

v =
1+e”
in the integral, or otherwise, show that the moment generating function (mgf)
of X, Mx, is given by the expression

L71—o\!
Mx (t) = dv —1<t<l1.
0 v

(b) Suppose that the continuous random variable Y has pdf fy and cdf Fy. Let W be
defined by

W ="Fy(Y).
Show that, for r =1,2,3, ...

1
r+1

Efw [Wr] =
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2. (a) Suppose that random variable Z has a standard Normal distribution.

(i) Compute the first four moments for Z,
Ey, [Zr]

forr=1,2,3,4.
(ii) Suppose that X ~ N (u,1). Find the expectation and variance of random

variable Y given by
Y = X2

(b) Suppose that the joint pdf of two variables U and V, fi v, is specified as follows:

foy (w,v) = fu (ulv) fv(v)

where

1
UV =v ~ Gamma (% + v, 5) V' ~ Poisson (\)

(i) Using the law of iterated expectation, find the marginal expectation of U, Ey, [U]
(ii) Find the mgf of U.
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3. (a) Suppose that Z; and Z, are independent random variables, each having a standard
Normal distribution.

(i) Find the marginal pdf of Y3, the random variable defined by

Y= —.
1 Zs

(ii) Find the expectation of Y].

(b) Suppose that V; and V; are independent random variables, where
Vi ~ Gamma (2, 5) Vy ~ Gamma (4, 5)
for parameter 3 > 0. Let the set A, be defined for 0 < w < 1 by

Ay = {(v1,v2) 1 (1 —w) vy < wvg, v1 >0, vg >0}.

(i) Show that

PtV € Al = [ Fu (T2) fi () o

where Fy, is the cdf of V;.

(ii) By computing Fy;,, find an explicit expression for P [(V},V3) € A,] as a function
of w.

Recall the Gamma function recursion formula; for oo > 0

FNa)=(a—1)T'(a—-1).
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4. (a) The joint probability mass function (pmf) for discrete variables X and Y, each taking
values in the set {1,2} is given by the following probability table

X

1 2

1 1
L g 3
Y

1 1
20 1 3

Find the correlation between X and Y.

(b) (i) For X and Y as given in part (a), find the variance of discrete random variable
T=X-Y

and show that
Varg, [T] # Varys, [X]+ Vary, [Y].

(ii) Prove from first principles that, in general, for two negatively correlated discrete
random variables V; and V5,

Varfvl,VQ [‘/1 - ‘/2] > Varfvl [‘/1] + VCLTfV2 [VQ]
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5. (a) (i) Suppose that random variable X has a Poisson distribution with parameter \.
Consider the standardized random variable, Z,, defined by
X =

Z)\:T.

Prove that, as A — oo,
Zy % Z ~ N(0,1).

(ii) Suppose that X7, ... X, ~ Poisson (Ax) and Y3,...Y,, ~ Poisson (\y), with all
variables mutually independent. Find i such that the random variable M defined

by
M=X+Y
satisfies
M5
where

X =

SEES
S|

Sx T-iyy
i=1 i=1

are the sample mean random variables for the two samples respectively.
[State without proof any theorems that you use in giving the result]

(b) Suppose that Xi,...,X,, ~ Exponential(\). The cdf of the random variable
T, = max {Xj, ..., X,,} is given by
Fr, (1) = {Fx(£)}"-
where Fx is the cdf of X1, ..., X,,.
(i) Find Fr, (t) explicitly.

(ii) Discuss the form of the limiting distribution of T}, as n — oc.
(iii) Find the form of the limiting distribution of random variable U,,, defined by

U, = \T,, —logn

as n —» OQ.
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