UNIVERSITY OF LONDON
 IMPERIAL COLLEGE LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY-JUNE 2003

This paper is also taken for the relevant examination for the Associateship.

M2S1 PROBABILITY AND STATISTICS II

DATE: Friday, 16th May 2003 TIME: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used. A formula sheet is given on pages $7 \& 8$.

1. a) Consider the discrete random variable N with range $\mathbb{N} \equiv\{0,1,2,3,4\}$ and probability mass function (pmf) given by

$$
f_{N}(n)= \begin{cases}p(1-p)^{n} & n=0,1,2,3 ; \\ (1-p)^{n} & n=4,\end{cases}
$$

for some constant $p, 0<p<1$.
i) Show that this is a valid pmf.
ii) Find G_{N}, the probability generating function (pgf) of N.

Hence deduce that, if $p=1 / 2$, then

$$
G_{N}(t)=\frac{1}{2-t}+\left(\frac{1-t}{2-t}\right)\left(\frac{t}{2}\right)^{4}
$$

b) Suppose that the random variable N in a) with $p=1 / 2$ is the number of sets of traffic lights at which a car must stop on a daily trip to work. Suppose also that the length of each traffic light stop is a random variable having a Gamma distribution with parameters α and β. It can be assumed that the lengths of stops at different traffic lights are independent random variables. Finally, let S be the continuous random variable corresponding to the total time spent stopped at traffic lights during a daily journey.
i) Find the expectation of N.
ii) Conditional on $N=n$, find the expectation of S.
iii) Find the unconditional expectation of S.
2. a) Consider the continuous random variable X having an Exponential distribution with parameter λ.
i) Prove the lack of memory property for X, that is, for $0<s<t$,

$$
P[X>t \mid X>s]=P[X>t-s] .
$$

ii) Find the probability density function (pdf) of random variable Y defined by

$$
Y=X+t_{0}
$$

for some $t_{0}>0$.
iii) Find the distribution of random variable W defined by

$$
W=X^{1 / \alpha},
$$

for some $\alpha>0$.
iv) Consider the random variable V that has a Pareto distribution on $\mathbb{V} \equiv \mathbb{R}^{+}$with parameters θ and α. Show that the lack of memory property does not hold for V.
b) The hazard function, h_{T}, for a positive, continuous random variable T is defined by

$$
h_{T}(t)=\frac{f_{T}(t)}{1-F_{T}(t)},
$$

for $t>0$.
i) Show that the hazard function for W (from a) iii)), h_{W}, is constant if and only if $\alpha=1$, is monotone increasing if $\alpha<1$ and is monotone decreasing if $\alpha>1$.
ii) Comment on the nature of the hazard function for V (from a) iv)), h_{V}.
iii) Consider the joint distribution of continuous random variables U_{1} and U_{2} defined by joint pdf

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\alpha u_{2}^{\alpha-1}
$$

if $0<u_{2}<\left(-\log u_{1}\right)^{1 / \alpha}<\infty, \quad u_{1}>0$ and is zero otherwise, for some $\alpha>0$.
Find the marginal distribution of U_{2}.
3. a) The joint distribution of the continuous random variables X and Y is defined by the joint probability density function

$$
f_{X, Y}(x, y)=k_{1} \sin (x+y) \quad(x, y) \in \mathbb{X}^{(2)}
$$

and zero otherwise, where $\mathbb{X}^{(2)} \equiv\{(x, y): 0 \leq x \leq \pi / 2,0 \leq y \leq \pi / 2\}$.
i) Show that $k_{1}=1 / 2$.
ii) Find the probability $P[2 X<Y]$.
iii) Are X and Y independent? Justify your answer.
b) i) Find the moment generating function of the marginal distribution of $X, M_{X}(t)$.
ii) Find the expectation of X.
c) Suppose now that X and Y have a joint cumulative distribution function given by

$$
F_{X, Y}(x, y)=k_{2} \sin x \sin y
$$

where X and Y have the same range $\mathbb{X}^{(2)}$ as before.

Find the covariance of X and Y.
4. a) Suppose that X and Y are independent continuous random variables where $X \sim N(0,1)$ and Y is strictly positive (so that $\mathbb{Y} \equiv \mathbb{R}^{+}$).
Let $T=X Y$.
i) Prove that, for $r=1,2, \ldots$

$$
E_{f_{T}}\left[T^{r}\right]=E_{f_{X}}\left[X^{r}\right] E_{f_{Y}}\left[Y^{r}\right] .
$$

ii) Show that the cumulative distribution function of T can be written

$$
F_{T}(t)=\int_{0}^{\infty} \int_{-\infty}^{t / y} f_{X}(x) f_{Y}(y) \mathrm{d} x \mathrm{~d} y
$$

iii) Show that

$$
f_{T}(t)=\int_{0}^{\infty} f_{X}\left(\frac{t}{y}\right) \frac{1}{y} f_{Y}(y) \mathrm{d} y
$$

b) i) Suppose that $X \sim N(0,1)$, and that Y is a random variable with probability density function (pdf)

$$
f_{Y}(y)=\frac{2 \beta^{\alpha}}{\Gamma(\alpha)}\left(\frac{1}{y^{2}}\right)^{\alpha+\frac{1}{2}} \exp \left\{-\frac{\beta}{y^{2}}\right\} \quad y>0
$$

for constant $s, \alpha, \beta>0$, where $\Gamma(\cdot)$ is the Gamma Function.
Find the pdf of $T=X Y$.
ii) The kurtosis of a random variable Z, κ_{Z}, is defined by

$$
\kappa_{Z}=\frac{E_{f_{Z}}\left[\left(Z-E_{f_{Z}}[Z]\right)^{4}\right]}{\left\{\operatorname{Var}_{f_{Z}}[Z]\right\}^{2}}
$$

Show, using properties of expectations and variances, that if $X \sim N(0,1)$ and $T=X Y$ as in $a)$ then

$$
\kappa_{X} \leq \kappa_{T} .
$$

5. a) i) Suppose that $X \sim \operatorname{Poisson}(\lambda)$. By considering the limiting moment generating function of an appropriately standardized variable show that, for large λ, X is approximately normally distributed with parameters to be identified.
ii) Suppose that $X_{1}, . ., X_{n}$, are independent and identically distributed Poisson (λ) random variables.
Find either the method of moments estimator or the maximum likelihood estimator of λ derived from $X_{1}, . ., X_{n}$.
Denote this estimator M_{n}.
iii) Show that M_{n} converges in probability to λ, that is,

$$
M_{n} \xrightarrow{p} \lambda .
$$

Hint:

$$
P\left[\left|M_{n}-\lambda\right|<\varepsilon\right]=P\left[\left|n M_{n}-n \lambda\right|<n \varepsilon\right] .
$$

Recall that the Chebychev inequality states that for any random variable Z with finite expectation μ and variance σ^{2}

$$
P[|Z-\mu|<\varepsilon] \geq 1-\frac{\sigma^{2}}{\varepsilon^{2}}
$$

You may quote without proof any relevant properties of Poisson random variables.
b) i) Suppose that the independent random variables $X_{1}, . ., X_{n}$ have a uniform distribution on $\mathbb{X} \equiv(0, \theta)$, and let

$$
Y_{n}=\max \left\{X_{1}, . ., X_{n}\right\}
$$

Show that

$$
\sqrt{Y_{n}} \xrightarrow{p} \sqrt{\theta} .
$$

Hint: you need only consider $P\left[\left|\sqrt{Y_{n}}-\sqrt{\theta}\right|<\varepsilon\right]$ for $0<\varepsilon<\sqrt{\theta}$.
ii) Let the sequence of random variables $X_{1}, . ., X_{n}$ on range $\mathbb{X} \equiv[0,2 \pi]$ have probability density functions given by

$$
f_{X_{n}}(x)=\frac{1}{2 \pi}[1+\cos (n x)] \quad 0 \leq x \leq 2 \pi,
$$

and zero otherwise.
Deduce whether or not the sequence $X_{1}, . ., X_{n}$ converges in distribution, and if it does, find the limiting distribution.

DISCRETE DISTRIBUTIONS							
	$\begin{gathered} \text { RANGE } \\ \mathbb{X} \end{gathered}$	PARAMETERS	MASS FUNCTION f_{X}	$\begin{gathered} \mathrm{CDF} \\ F_{X} \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{gathered} \mathrm{MGF} \\ M_{X} \end{gathered}$
Bernoulli(θ)	\{0, 1\}	$\theta \in(0,1)$	$\theta^{x}(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^{t}$
$\operatorname{Binomial}(n, \theta)$	$\{0,1, \ldots, n\}$	$n \in \mathbb{Z}^{+}, \theta \in(0,1)$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$		$n \theta$	$n \theta(1-\theta)$	$\left(1-\theta+\theta e^{t}\right)^{n}$
Poisson(λ)	$\{0,1,2, \ldots\}$	$\lambda \in \mathbb{R}^{+}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$		λ	λ	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(θ)	$\{1,2, \ldots\}$	$\theta \in(0,1)$	$(1-\theta)^{x-1} \theta$	$1-(1-\theta)^{x}$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^{2}}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
$\text { NegBinomial }(n, \theta)$ or	$\begin{aligned} & \{n, n+1, \ldots\} \\ & \{0,1,2, \ldots\} \end{aligned}$	$\begin{aligned} & n \in \mathbb{Z}^{+}, \theta \in(0,1) \\ & n \in \mathbb{Z}^{+}, \theta \in(0,1) \end{aligned}$	$\begin{aligned} & \binom{x-1}{n-1} \theta^{n}(1-\theta)^{x-n} \\ & \binom{n+x-1}{x} \theta^{n}(1-\theta)^{x} \end{aligned}$		$\begin{aligned} & \frac{n}{\theta} \\ & \frac{n(1-\theta)}{\theta} \end{aligned}$	$\begin{aligned} & \frac{n(1-\theta)}{\theta^{2}} \\ & \frac{n(1-\theta)}{\theta^{2}} \end{aligned}$	$\begin{aligned} & \left(\frac{\theta e^{t}}{1-e^{t}(1-\theta)}\right)^{n} \\ & \left(\frac{\theta}{1-e^{t}(1-\theta)}\right)^{n} \end{aligned}$

For CONTINUOUS distributions (given on Page 8), define the GAMMA FUNCTION
$\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$
and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives
$F_{Y}(y)=F_{X}\left(\frac{y-\mu}{\sigma}\right)$
$f_{Y}(y)=f_{X}\left(\frac{y-\mu}{\sigma}\right) \frac{1}{\sigma}$

CONTINUOUS DISTRIBUTIONS							
	RANGE X	PARAMETERS	$\begin{gathered} \hline \text { PDF } \\ f_{X} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CDF } \\ F_{X} \\ \hline \end{gathered}$	$\mathrm{E}_{f_{X}}[X]$	$\operatorname{Var}_{f_{X}}[X]$	$\begin{gathered} \hline \text { MGF } \\ M_{X} \\ \hline \end{gathered}$
Uniform (α, β) (standard model $\alpha=0, \beta=1$)	(α, β)	$\alpha<\beta \in \mathbb{R}$	$\frac{1}{\beta-\alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta-\alpha)^{2}}{12}$	$\frac{e^{\beta t}-e^{\alpha t}}{t(\beta-\alpha)}$
Exponential (λ) (standard model $\lambda=1$)	\mathbb{R}^{+}	$\lambda \in \mathbb{R}^{+}$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\left(\frac{\lambda}{\lambda-t}\right)$
$\operatorname{Gamma}(\alpha, \beta)$ (standard model $\beta=1$)	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$		$\bar{\alpha}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{\beta}{\beta-t}\right)^{c}$
Weibull (α, β) (standard model $\beta=1$)	\mathbb{R}^{+}	$\alpha, \beta \in \mathbb{R}^{+}$	$\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$1-e^{-\beta x^{\alpha}}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma\left(1+2 \alpha^{-1}\right)-\Gamma\left(1+\alpha^{-1}\right)^{2}}{\beta^{2 / \alpha}}$	
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ (standard model $\mu=0, \sigma=1$)	\mathbb{R}	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$		μ	σ^{2}	$\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\}$
Student(ν)	\mathbb{R}	$\nu \in \mathbb{R}^{+}$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}\left\{1+\frac{x^{2}}{\nu}\right\}^{(\nu+1) / 2}}$		0 (if $\nu>1)$	$\frac{\nu}{\nu-2} \quad($ if $\nu>2)$	
$\operatorname{Pareto}(\theta, \alpha)$	\mathbb{R}^{+}	$\theta, \alpha \in \mathbb{R}^{+}$	$\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}$	$\begin{aligned} & \frac{\theta}{\alpha-1} \\ & (\text { if } \alpha>1 \text {) } \end{aligned}$	$\begin{aligned} & \frac{\alpha \theta^{2}}{(\alpha-1)(\alpha-2)} \\ & \text { (if } \alpha>2) \end{aligned}$	
$\operatorname{Beta}(\alpha, \beta)$	$(0,1)$	$\alpha, \beta \in \mathbb{R}^{+}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

