M2PM3 SOLUTIONS 8, 26.3.2009

Q1. With $z=e^{i \theta}, \cos \theta=\frac{1}{2}\left(z+z^{-1}\right), \sin \theta=\frac{1}{2 i}\left(z-z^{-1}\right), d z / i z=d \theta$. So with Γ the unit circle, the integral is

$$
I=\int_{\Gamma} \frac{\frac{1}{(-4)}\left(z-z^{-1}\right)^{2}}{a+\frac{b}{2}\left(z+z^{-1}\right)} \frac{d z}{i z}=\frac{i}{2 b} \int_{\Gamma} \frac{\left(z^{2}-1\right)^{2} d z}{z^{2}\left(z^{2}+2 a z / b+1\right)} .
$$

The quadratic in the denominator has roots $\alpha=\left(-a+\sqrt{a^{2}-b^{2}}\right) / b, \beta=(-a-$ $\sqrt{\cdot}) / b$. The product of the roots is 1 , so $|\alpha|<1,|b|>1$. So the integrand $f(z)=\left(z^{2}-1\right)^{2} /\left[z^{2}(z-\alpha)(z-\beta)\right]$ is holomorphic inside Γ except for a double pole at 0 and a simple pole at α. By the Cover-Up Rule, as $1 / \alpha=\beta$,

$$
\begin{gathered}
\operatorname{Res}_{\alpha} f=\left(\alpha^{2}-1\right)^{2} /\left[\alpha^{2}(\alpha-\beta)\right]=(\alpha-1 / \alpha)^{2} /(\alpha-\beta)=(\alpha-\beta)^{2} /(\alpha-\beta) \\
=\alpha-\beta=2 \sqrt{a^{2}-b^{2}} / b .
\end{gathered}
$$

Near 0,
$f(z)=\frac{1-2 z^{2}+. .}{z^{2}\left(1+2 a z / b+z^{2}\right.}=\frac{1}{z^{2}}\left(1-2 a z / b+O\left(z^{2}\right)\right)\left(1+O\left(z^{2}\right)\right)=\frac{1}{z^{2}}\left[1-2 a z / b+O\left(z^{2}\right)\right]$.
So picking out the coefficient of $1 / z$ (the residue, by definition), $\operatorname{Res}_{0} f=-2 a / b$. So by Cauchy's Residue Theorem,

$$
I=\frac{i}{2 b} \cdot 2 \pi i \cdot\left(-\frac{2 a}{b}+\frac{2 \sqrt{a^{2}-b^{2}}}{b}\right)=\frac{2 \pi}{b}\left[a-\sqrt{a^{2}-b^{2}}\right] .
$$

Q2. As the integrand is even, it suffices to show

$$
I:=\int_{-\infty}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{\sqrt{2} a^{3}}
$$

Use $f(z)=1 /\left(z^{4}+a^{4}\right)$ round a semicircular contour Γ in the upper halfplane with base $[-R, R]$. As $R \rightarrow \infty$, the contribution from the semicircle is $O\left(1 / R^{3}\right) \rightarrow 0$, and the contribution from the base tends to I. The integrand has poles where $z^{4}=-a^{4}=e^{i \pi} a^{4}=e^{i(2 n+1) \pi} a^{4}, z=a e^{i \pi / 4}, a e^{3 i \pi / 4}, a e^{5 i \pi / 4}$, $a e^{7 i \pi / 4}$. Only the first two of these lie in the upper half-plane. So f is holomorphic inside Γ except for simple poles at $a e^{i \pi / 4}, a e^{3 i \pi / 4}$. Let b stand for any of the poles. As the residue of f at b is the coefficient of $1 /(z-b)$ in the Laurent expansion of f at b, we can evaluate this by multiplying f by $z-b$ and letting $z \rightarrow b$:

$$
\operatorname{Res}_{b} f=\lim _{z \rightarrow b}(z-b) /\left(z^{4}-b^{4}\right)=1 / 4 b^{3}=b / 4 b^{4}=-b / 4 a^{4}
$$

by L'Hospital's Rule (quicker here than the Cover-Up Rule). So

$$
\operatorname{Res}_{e^{i \pi / 4}} f=-\frac{e^{i \pi / 4}}{a^{4}}, \quad \operatorname{Res} e_{e^{3 i \pi / 4}} f=-\frac{e^{3 i \pi / 4}}{a^{4}}
$$

So by Cauchy's Residue Theorem, $I=2 \pi i .(-)\left(a e^{i \pi / 4}+a e^{3 i \pi / 4}\right) / 4 a^{4}$, or

$$
I=-\frac{i \pi}{2 a^{3}}\left(e^{i \pi / 4}-e^{-i \pi / 4}\right)=-\frac{i \pi}{2 a^{3}} \cdot 2 i \sin (\pi / 4)=\frac{\pi}{\sqrt{2} a^{3}} .
$$

Q3. Put $f(z)=(\pi \cot \pi z) /\left(1+z+z^{2}\right)$. Since $z^{3}-1=(z-1)\left(z^{2}+z+1\right)$, the roots of $z^{2}+z+1$ are $e^{2 \pi i / 3}=-1 / 2+i \sqrt{3} / 2$ and $e^{4 \pi i / 3}=-1 / 2-i \sqrt{3} / 2$, the complex cube roots of unity other than 1 . Integrating f round the square contour Γ_{n} with vertices $(n+1 / 2)(\pm 1 \pm i)$ gives

$$
\int_{\Gamma_{n}} f=2 \pi i\left(\sum_{k=-n}^{n} \frac{1}{1+k+k^{2}}+\operatorname{Res}_{e^{2 \pi i / 3}} f+\operatorname{Res}_{e^{4 \pi i / 3}} f\right)
$$

But by the Estimation Lemma (or ML Inequality),

$$
\int_{\Gamma_{n}} f=O\left(1 / n^{2}\right) \cdot O(n)=O(1 / n) \rightarrow 0 \quad(n \rightarrow \infty)
$$

Combining,

$$
\sum_{n=-\infty}^{\infty} \frac{1}{1+n+n^{2}}=-\left(\operatorname{Res}_{e^{2 \pi i / 3}}+\operatorname{Res}_{e^{4 \pi i / 3}}\right) \frac{\pi \cot \pi z}{\left(z-e^{2 \pi i / 3}\right)\left(z-e^{4 \pi i / 3}\right)}
$$

By the Cover-Up Rule, the RHS is
$-\frac{\pi \cot \left(\pi e^{2 \pi i / 3}\right)}{i \sqrt{3}}+\frac{\pi \cot \left(\pi e^{4 \pi i / 3}\right)}{i \sqrt{3}}=\frac{i \pi}{\sqrt{3}}\left[\left(\cot \left(-\frac{\pi}{2}+\frac{i \pi \sqrt{3}}{2}\right)-\cot \left(-\frac{\pi}{2}-\frac{i \pi \sqrt{3}}{2}\right)\right]\right.$.
Since $\tan (a+\pi / 2)=-\cot a, \cot (a-\pi / 2)=-\tan a$, the RHS is

$$
\frac{i \pi}{\sqrt{3}}\left[\tan \left(-\frac{i \pi \sqrt{3}}{2}\right)-\tan \left(\frac{i \pi \sqrt{3}}{2}\right)\right]=\frac{2 i \pi}{\sqrt{3}} \tan \left(-\frac{i \pi \sqrt{3}}{2}\right)
$$

As $i \tan i \theta=\tanh \theta$, this is $(2 i \pi / \sqrt{3}) \cdot(-i) \cdot \tanh (\pi \sqrt{3} / 2)$. So

$$
\sum_{n=-\infty}^{\infty} \frac{1}{1+n+n^{2}}=\frac{2 \pi}{\sqrt{3}} \tanh (\pi \sqrt{3} / 2)
$$

Q4. For $m>0$, put $u:=m x$. Since $d x / x=d u / u$, this reduces the problem to the case $m=1$, which gives $I=\pi / 2$ (Lectures). For $m<0$, we get $I=-\pi / 2$, since the integrand is odd in m. For $m=0$, we get 0 since the integrand is 0 .

