
M2PM3 SOLUTIONS 8, 26.3.2009

Q1. With z = eiθ, cos θ = 1
2 (z + z−1), sin θ = 1

2i (z − z−1), dz/iz = dθ. So with
Γ the unit circle, the integral is

I =
∫

Γ

1
(−4) (z − z−1)2

a + b
2 (z + z−1)

dz

iz
=

i

2b

∫

Γ

(z2 − 1)2dz

z2(z2 + 2az/b + 1)
.

The quadratic in the denominator has roots α = (−a+
√

a2 − b2)/b, β = (−a−√
.)/b. The product of the roots is 1, so |α| < 1, |b| > 1. So the integrand

f(z) = (z2 − 1)2/[z2(z − α)(z − β)] is holomorphic inside Γ except for a double
pole at 0 and a simple pole at α. By the Cover-Up Rule, as 1/α = β,

Resαf = (α2 − 1)2/[α2(α− β)] = (α− 1/α)2/(α− β) = (α− β)2/(α− β)

= α− β = 2
√

a2 − b2/b.

Near 0,

f(z) =
1− 2z2 + ..

z2(1 + 2az/b + z2
=

1
z2

(1−2az/b+O(z2))(1+O(z2)) =
1
z2

[1−2az/b+O(z2)].

So picking out the coefficient of 1/z (the residue, by definition), Res0f = −2a/b.
So by Cauchy’s Residue Theorem,

I =
i

2b
.2πi.

(
−2a

b
+

2
√

a2 − b2

b

)
=

2π

b
[a−

√
a2 − b2].

Q2. As the integrand is even, it suffices to show

I :=
∫ ∞

−∞

dx

x4 + a4
=

π√
2a3

.

Use f(z) = 1/(z4 + a4) round a semicircular contour Γ in the upper half-
plane with base [−R,R]. As R → ∞, the contribution from the semicircle
is O(1/R3) → 0, and the contribution from the base tends to I. The integrand
has poles where z4 = −a4 = eiπa4 = ei(2n+1)πa4, z = aeiπ/4, ae3iπ/4, ae5iπ/4,
ae7iπ/4. Only the first two of these lie in the upper half-plane. So f is holomor-
phic inside Γ except for simple poles at aeiπ/4, ae3iπ/4. Let b stand for any of
the poles. As the residue of f at b is the coefficient of 1/(z − b) in the Laurent
expansion of f at b, we can evaluate this by multiplying f by z − b and letting
z → b:

Resbf = lim
z→b

(z − b)/(z4 − b4) = 1/4b3 = b/4b4 = −b/4a4,

by L’Hospital’s Rule (quicker here than the Cover-Up Rule). So

Reseiπ/4f = −eiπ/4

a4
, Rese3iπ/4f = −e3iπ/4

a4
.
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So by Cauchy’s Residue Theorem, I = 2πi.(−)(aeiπ/4 + ae3iπ/4)/4a4, or

I = − iπ

2a3
(eiπ/4 − e−iπ/4) = − iπ

2a3
.2i sin(π/4) =

π√
2a3

.

Q3. Put f(z) = (π cot πz)/(1 + z + z2). Since z3 − 1 = (z − 1)(z2 + z + 1),
the roots of z2 + z + 1 are e2πi/3 = −1/2 + i

√
3/2 and e4πi/3 = −1/2− i

√
3/2,

the complex cube roots of unity other than 1. Integrating f round the square
contour Γn with vertices (n + 1/2)(±1± i) gives

∫

Γn

f = 2πi
( n∑

k=−n

1
1 + k + k2

+ Rese2πi/3f + Rese4πi/3f
)
.

But by the Estimation Lemma (or ML Inequality),
∫

Γn

f = O(1/n2).O(n) = O(1/n) → 0 (n →∞).

Combining,

∞∑
n=−∞

1
1 + n + n2

= −
(
Rese2πi/3 + Rese4πi/3

) π cot πz

(z − e2πi/3)(z − e4πi/3)
.

By the Cover-Up Rule, the RHS is

−π cot(πe2πi/3)
i
√

3
+

π cot(πe4πi/3)
i
√

3
=

iπ√
3
[(cot(−π

2
+

iπ
√

3
2

)− cot(−π

2
− iπ

√
3

2
)].

Since tan(a + π/2) = − cot a, cot(a− π/2) = − tan a, the RHS is

iπ√
3
[tan(− iπ

√
3

2
)− tan(

iπ
√

3
2

)] =
2iπ√

3
tan(− iπ

√
3

2
).

As i tan iθ = tanh θ, this is (2iπ/
√

3).(−i). tanh(π
√

3/2). So

∞∑
n=−∞

1
1 + n + n2

=
2π√

3
tanh(π

√
3/2).

Q4. For m > 0, put u := mx. Since dx/x = du/u, this reduces the problem to
the case m = 1, which gives I = π/2 (Lectures). For m < 0, we get I = −π/2,
since the integrand is odd in m. For m = 0, we get 0 since the integrand is 0.

NHB

2


