M2PM3 SOLUTIONS 7. 19.3.2009

Q1. Since $(\sin x) / x$ is bounded on $[0, \infty)$, there is no problem about the integral existing, and one can show that F is continuous on $[0, \infty)$; it is clearly decreasing. So $I=F(0)=F(0+)$, by continuity. Differentiating under the integral sign (which we may - given) gives

$$
\begin{aligned}
& F^{\prime}(t)=-\int_{0}^{\infty} e^{-x t} \sin x d x \\
&=\int_{0}^{\infty} e^{-x t} d \cos x \\
&=\left[e^{-x t} \cos x\right]_{0}^{\infty}-\int_{0}^{\infty} \cos x \cdot(-t) e^{-x t} d x \\
&=-1+t \int_{0}^{\infty} e^{-x t} d \sin x \\
&=-1+t\left[e^{-x t} \sin x\right]_{0}^{\infty}-t \int_{0}^{\infty} \sin x \cdot(-t) e^{-x t} d x \\
&=-1+t^{2} \int_{0}^{\infty} e^{-x t} \sin x d x \\
&=-1-t^{2} F^{\prime}(t): \\
&\left(1+t^{2}\right) F^{\prime}(t)=-1, \quad F^{\prime}(t)=-1 /\left(1+t^{2}\right) .
\end{aligned}
$$

Integrating, $F(t)=-\tan ^{-1} t+C$. But $F(t) \rightarrow 0$ as $t \rightarrow \infty: C=+\tan ^{-1} \infty=$ $\pi / 2$. So $I=F(0+)=\pi / 2$.

Q2. As $x^{4}+5 x^{2}+6=\left(x^{2}+3\right)\left(x^{2}+2\right)$, which has simple zeros at $\pm i \sqrt{2}, \pm i \sqrt{3}$, use $f(z):=z^{2} /\left(z^{2}+3\right)\left(z^{2}+2\right)$ and the contour Γ consisting of a large semicircle in the upper half-plane with base $[-R, R]$. Then f has simple poles inside Γ at $i \sqrt{3}, i \sqrt{2}$. By Jordan's Lemma, the integral round the semicircle tends to 0 as $R \rightarrow \infty$, while the integral along the base tends to the integral I we are to evaluate. So by Cauchy's Residue Theorem, $I=\sum \operatorname{Res} f$, the sum being over the poles at $i \sqrt{3}$ and $i \sqrt{2}$ inside Γ. As both poles are simple, we can use the Cover-Up Rule:

$$
\begin{gathered}
\operatorname{Res}_{i \sqrt{3}} f=(i \sqrt{3})^{2} /[(-3+2)(i \sqrt{3}+i \sqrt{3})]=(-3) /[-2 i \sqrt{3}]=-i \sqrt{3} / 2 \\
\operatorname{Res}_{i \sqrt{2}} f=(i \sqrt{2})^{2} /[(-2+3)(i \sqrt{2}+i \sqrt{2})]=(-2) /[2 i \sqrt{2}]=i \sqrt{2} / 2
\end{gathered}
$$

So by Cauchy's Residue Theorem,

$$
I=2 \pi i \sum \operatorname{Res} f=2 \pi i \cdot(-) i(\sqrt{3}-\sqrt{2}) / 2=\pi(\sqrt{3}-\sqrt{2})
$$

Q3. Use $f(z)=\left(e^{i p z}-e^{i q z}\right) / z^{2}$. This has a pole at 0 (apparently double, but actually single: the numerator has a simple zero at 0). We use a semicircular
contour, indented to avoid this pole - a contour Γ consisting of:
(i) Γ_{1}, the line segment $[-R,-r]$ (R large, $r>0$ small);
(ii) Γ_{2}, the semi-circle centre 0 radius r in the upper half-plane, clockwise (-ve sense);
(iii) $\Gamma_{3}=[r, R]$;
(iv) Γ_{4}, the semi-circle centre 0 radius R in the upper half-plane, anticlockwise (+ve sense).
On $\Gamma_{4},\left|e^{i p z}\right|=\left|e^{i p(x+i y)}\right|=e^{-p y} \leq 1$, as $p \geq 0$ and $y \geq 0$ in the upper halfplane, and similarly $\left|e^{i q z}\right| \leq 1$. So $|f(z)|=O\left(1 / R^{2}\right)$, and by $(M L)$,
$\int_{\Gamma_{4}} f=O\left(1 / R^{2}\right) \cdot \pi R=O(1 / R) \rightarrow 0$ as $R \rightarrow \infty$.
As $R \rightarrow \infty, r \rightarrow 0, \int_{\Gamma_{1}} f+\int_{\Gamma_{3}} f \rightarrow I$, the required integral.
On $\Gamma_{2}, z=r e^{i \theta}$,
$f(z)=\left[\left(1+i p z-p^{2} z^{2} / 2 \ldots\right)-\left(1+i q z-q^{2} z^{2} / 2 \ldots\right)\right] / z^{2}=\left[i(p-q)-\frac{1}{2}\left(p^{2}-q^{2}\right) z+\ldots\right] / z$,
$d z / z=i r e^{i \theta} d \theta / r e^{i \theta}=i d \theta$, where θ goes from π to 0 . So (changing the sign to interchange the limits of integration)

$$
\int_{\Gamma_{2}} f=-\int_{0}^{\pi}[i(p-q)+O(r)](i d \theta) \rightarrow \pi(p-q) \quad(r \rightarrow 0) .
$$

Since $\int_{\Gamma} f=0$ by Cauchy's Theorem, this gives $I+\pi(p-q)=0: I=-\pi(p-q)$.

