M2PM3 SOLUTIONS 7. 19.3.2009

Q1. Since $(\sin x)/x$ is bounded on $[0, \infty)$, there is no problem about the integral existing, and one can show that F is continuous on $[0, \infty)$; it is clearly decreasing. So I = F(0) = F(0+), by continuity. Differentiating under the integral sign (which we may – given) gives

$$F'(t) = -\int_0^\infty e^{-xt} \sin x dx$$

= $\int_0^\infty e^{-xt} d\cos x$
= $[e^{-xt} \cos x]_0^\infty - \int_0^\infty \cos x \cdot (-t) e^{-xt} dx$
= $-1 + t \int_0^\infty e^{-xt} d\sin x$
= $-1 + t [e^{-xt} \sin x]_0^\infty - t \int_0^\infty \sin x \cdot (-t) e^{-xt} dx$
= $-1 + t^2 \int_0^\infty e^{-xt} \sin x dx$
= $-1 - t^2 F'(t)$:
 $(1 + t^2) F'(t) = -1, \qquad F'(t) = -1/(1 + t^2).$

Integrating, $F(t) = -\tan^{-1} t + C$. But $F(t) \to 0$ as $t \to \infty$: $C = +\tan^{-1} \infty = \pi/2$. So $I = F(0+) = \pi/2$.

Q2. As $x^4 + 5x^2 + 6 = (x^2 + 3)(x^2 + 2)$, which has simple zeros at $\pm i\sqrt{2}, \pm i\sqrt{3}$, use $f(z) := z^2/(z^2 + 3)(z^2 + 2)$ and the contour Γ consisting of a large semicircle in the upper half-plane with base [-R, R]. Then f has simple poles inside Γ at $i\sqrt{3}, i\sqrt{2}$. By Jordan's Lemma, the integral round the semicircle tends to 0 as $R \to \infty$, while the integral along the base tends to the integral I we are to evaluate. So by Cauchy's Residue Theorem, $I = \sum Resf$, the sum being over the poles at $i\sqrt{3}$ and $i\sqrt{2}$ inside Γ . As both poles are simple, we can use the Cover-Up Rule:

$$\begin{aligned} \operatorname{Res}_{i\sqrt{3}}f &= (i\sqrt{3})^2/[(-3+2)(i\sqrt{3}+i\sqrt{3})] = (-3)/[-2i\sqrt{3}] = -i\sqrt{3}/2;\\ \operatorname{Res}_{i\sqrt{2}}f &= (i\sqrt{2})^2/[(-2+3)(i\sqrt{2}+i\sqrt{2})] = (-2)/[2i\sqrt{2}] = i\sqrt{2}/2. \end{aligned}$$

So by Cauchy's Residue Theorem,

$$I = 2\pi i \sum Resf = 2\pi i (-)i(\sqrt{3} - \sqrt{2})/2 = \pi(\sqrt{3} - \sqrt{2}).$$

Q3. Use $f(z) = (e^{ipz} - e^{iqz})/z^2$. This has a pole at 0 (apparently double, but actually single: the numerator has a simple zero at 0). We use a semicircular

contour, indented to avoid this pole – a contour Γ consisting of:

(i) Γ_1 , the line segment [-R, -r] (*R* large, r > 0 small);

(ii) Γ_2 , the semi-circle centre 0 radius r in the upper half-plane, clockwise (-ve sense);

(iii)
$$\Gamma_3 = [r, R];$$

(iv) Γ_4 , the semi-circle centre 0 radius R in the upper half-plane, anticlockwise (+ve sense).

On Γ_4 , $|e^{ipz}| = |e^{ip(x+iy)}| = e^{-py} \le 1$, as $p \ge 0$ and $y \ge 0$ in the upper halfplane, and similarly $|e^{iqz}| \le 1$. So $|f(z)| = O(1/R^2)$, and by (ML), $\int_{\Gamma_4} f = O(1/R^2) \cdot \pi R = O(1/R) \to 0$ as $R \to \infty$.

As $R \to \infty, r \to 0$, $\int_{\Gamma_1} f + \int_{\Gamma_3} f \to I$, the required integral. On Γ_2 , $z = re^{i\theta}$,

$$f(z) = [(1+ipz-p^2z^2/2...) - (1+iqz-q^2z^2/2...)]/z^2 = [i(p-q) - \frac{1}{2}(p^2-q^2)z + ...]/z$$

 $dz/z = ire^{i\theta}d\theta/re^{i\theta} = id\theta$, where θ goes from π to 0. So (changing the sign to interchange the limits of integration)

$$\int_{\Gamma_2} f = -\int_0^\pi [i(p-q) + O(r)](id\theta) \to \pi(p-q) \qquad (r \to 0).$$

Since $\int_{\Gamma} f = 0$ by Cauchy's Theorem, this gives $I + \pi(p-q) = 0$: $I = -\pi(p-q)$.

NHB