M2PM3 SOLUTIONS 4. 19.2.2009

Q1. Triangle Lemma.
Draw the line joining z_{1} and z_{2}, and produce it until it meets triangle Δ at points Z_{1}, Z_{2} say. Then

$$
\left|z_{1}-z_{2}\right| \leq\left|Z_{1}-Z_{2}\right|,
$$

with equality iff both z_{1}, z_{2} are on Δ rather than inside it (so $z_{1}=Z_{1}, z_{2}=Z_{2}$). There are two cases.
(i) Z_{1}, Z_{2} lie on different sides of the triangle. Let Z_{3} be the vertex in which these sides meet. Then by the Triangle Inequality,

$$
\left|Z_{1}-Z_{2}\right| \leq\left|Z_{1}-Z_{3}\right|+\left|Z_{2}-Z_{3}\right| \leq L_{1}+L_{2} \leq L
$$

where L_{1}, L_{2} are the lengths of the sides containing Z_{1}, Z_{2}. Combining, $\left|z_{1}-z_{2}\right| \leq L$.
(ii) Z_{1}, Z_{2} lie on the same side, of length L_{12} say. Then

$$
\left|Z_{1}-Z_{2}\right| \leq L_{12} \leq L
$$

and the result follows as in (i).
Q2. Holomorphy and Conjugation.
As f is holomorphic at $z_{0}, g(z):=f\left(z_{0}+z\right)$ is holomorphic at the origin. So

$$
\frac{g(h)-g(0)}{h} \rightarrow g^{\prime}(0)=f^{\prime}\left(z_{0}\right) \quad(h=k+i \ell \rightarrow 0)
$$

So replacing ℓ by $-\ell$,

$$
\frac{g(\bar{h})-g(0)}{\bar{h}} \rightarrow g^{\prime}(0)=f^{\prime}\left(z_{0}\right) \quad(h \rightarrow 0)
$$

So

$$
\frac{g(\bar{h})-g(0)}{h}=\frac{g(\bar{h})-g(0)}{\bar{h}} \cdot \frac{\bar{h}}{h} \sim g^{\prime}(0) \cdot \bar{h} / h \quad(h \rightarrow 0) .
$$

But $\bar{h} / h=(k-i \ell) /(k+i \ell)$. For h real $(\ell=0)$ this is 1 ; for h imaginary $(k=0)$ this is -1 . So this does not have a limit as $h \rightarrow 0$ (recall that this means $|h| \rightarrow 0$: NO restriction on the argument of h). So $g(h)$ is not differentiable w.r.t. \bar{h} at 0 . So $f(z)$ is not differentiable w.r.t. \bar{z}.

Q3. Union of Domains.
Suppose $\bigcup_{i} D_{i}=G \cup H$ with G, H disjoint and open. We have to show one of G, H is empty. Now

$$
D_{j}=\left(D_{j} \cap G\right) \cup\left(D_{j} \cap H\right)
$$

The union on the RHS is disjoint (as G, H are), and the sets on RHS are open. As D_{j} is connected, one of these sets must be empty: say, $D_{j} \cap H$ is empty,
i.e. $D_{j} \subset G$. Similarly, each D_{k} is contained in one of G, H. But if $D_{k} \subset H$, $D_{j} \cap D_{k}$ non-empty contradicts $G \cap H$ empty. So all the $D_{k} \subset G$. So H is empty.
Alternative Proof [assuming equivalence of connectedness and polygonal, or arcwise, connectedness].

Take $z_{0} \in \bigcap_{i} D_{i}$. We can join any point in any D_{j} to z_{0} by a path [e.g., a polygonal arc] lying in D_{j}, so in $\bigcup_{i} D_{i}$. So we can join any two points in $\bigcup_{i} D_{i}$ by such a path, by joining the paths linking each to z_{0}. So $\bigcup_{i} D_{i}$ is polygonally connected, so connected.

Q4 Connected Components.
Let z be any point in S. Let $\left\{C_{i}\right\}$ be the class of all connected subsets of S containing z. This class is non-empty (as $\{z\}$ is connected). By Q3, $C:=\bigcup_{i} C_{i}$ is a connected subset of S containing z. By construction (as the union of all ...), C is maximal. So C is a component, and contains z. If C^{\prime} is another component containing z, C^{\prime} must be one of the C_{i}, so $C^{\prime} \subset C$. But C^{\prime} is maximal (it is a component). So $C \subset C^{\prime}$, so $C=C^{\prime}$. So each point z lies in a unique (connected) component, called the (connected) component containing z.

Q5. Write a_{n} for the coefficient of z^{n}.
(i) $a_{n+1} / a_{n}=-n /(n+1)=-1 /(1+1 / n) \rightarrow-1$, so $\left|a_{n+1} / a_{n}\right| \rightarrow 1$. So by the Ratio Test, the radius of convergence is 1 . So the function is holomorphic in the unit disc $D:=\{z:|z|<1\}$.
Note. The sum function is $\log (1+z)$. This has a singularity at $z=-1$ (a branch point).
(ii) $a_{5 n}=1, a_{5 n+k}=0(k=1,2,3,4)$. $\limsup \left|a_{n}\right|^{1 / n}=1$. So the radius of convergence is 1 , and the region of holomorphy is again D.
Note. The sum function is $1 /\left(1-z^{5}\right)$. This has 5 singularities on the unit circle, at the 5 fifth roots of unity.
(iii) $a_{n}=1 / n^{n}, a_{n}^{1 / n}=1 / n \rightarrow 0$. So the radius of convergence is infinite. The sum function is holomorphic throughout the complex plane \mathbf{C} (is an entire function, or an integral function).

