M2PM3 PROBLEMS 7. 7.3.2009

Q1. Obtain

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{1}{2} \pi
$$

by real methods, as follows. Write

$$
F(t):=\int_{0}^{\infty} e^{-x t} \frac{\sin x}{x} d x \quad(t \geq 0)
$$

Assuming that one can 'differentiate under the integral sign' (one can - you may assume this), obtain

$$
F^{\prime}(t)=-\int_{0}^{\infty} e^{-x t} \sin x d x \quad(t>0)
$$

Integrate by parts twice to show that

$$
F^{\prime}(t)=-1 /\left(1+t^{2}\right)
$$

Integrate to find $F(t)$, and use $F(t) \rightarrow 0$ as $t \rightarrow \infty$ to deduce $I:=F(0+)=\pi / 2$.
Q2. Find

$$
I:=\int_{0}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+6} d x .
$$

Q3. Show that for $p, q \geq 0$,

$$
\int_{-\infty}^{\infty} \frac{\cos p x-\cos q x}{x^{2}} d x=-\pi(p-q)
$$

