M2PM3 PROBLEMS 5. 19.2.2009

Q1. For each of the following functions $u=u(x, y)$, find the $v=v(x, y)$ so that $f:=u+i v, f=f(z)$ is holomorphic.
(i) $u=x^{2}-y^{2}-x$.
(ii) $u=x-y /\left(x^{2}+y^{2}\right)$.

Q2. Show that as θ increases from 0 to $\pi / 2, \sin \theta / \theta$ decreases from 1 to $2 / \pi$. [We shall need this result from Real Analysis in Chapter III: Applications.]

Q3. Let $z_{0}:=e^{i \alpha}, \alpha$ not an integer multiple of π,

$$
f(z):=\frac{z^{n}+z^{-n}-z_{0}^{n}-z_{0}^{-n}}{\left(z-z_{0}\right)\left(z-z_{0}^{-1}\right)} .
$$

Show that f is holomorphic for all non-zero z (including z_{0} and z_{0}^{-1}), while near $0 f(z)$ can be expanded in positive and negative powers of z, the coefficient of z^{-1} being

$$
\frac{\left(1+z_{0}^{2}+\ldots+z_{0}^{2(n-1)}\right)}{z_{0}^{n-1}}=\frac{\sin n \alpha}{\sin \alpha} .
$$

[If f is not holomorphic at z_{0}, and we expand f about z_{0} in positive and negative powers of $z-z_{0}$, the coefficient of $\left(z-z_{0}\right)^{-1}$ is called the residue of f at z_{0}, and plays a dominant role in Ch. III.]

Q4. We know from Problems 3 that the Gamma function $\Gamma(z)$ is holomorphic except at the points $z=0,-1,-2, \ldots$.
(i) By induction or otherwise, show that for complex ζ,

$$
\begin{gathered}
\Gamma(-n+\zeta) \sim \frac{(-)^{n}}{n!\zeta} \quad(\zeta \rightarrow 0, n=0,1,2, \ldots) \\
\Gamma(-n+\zeta) \Gamma(n+1-\zeta) \sim(-)^{n} / \zeta \quad(\zeta \rightarrow 0, n=0, \pm 1, \pm 2, \ldots),
\end{gathered}
$$

and so also that

$$
\Gamma(n+\zeta) \Gamma(1-n-\zeta) \sim(-)^{n} / \zeta \quad(\zeta \rightarrow 0, n=0, \pm 1, \pm 2, \ldots)
$$

(ii) Show that for n an integer and $z=n+\zeta$,

$$
\pi / \sin \pi z \sim(-)^{n} / \zeta \quad(\zeta \rightarrow 0, n=0, \pm 1, \pm 2, \ldots)
$$

[We shall see later that $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$, so this similarity is not accidental!]

