M2PM3 PROBLEMS 4. 12.2.2009

Q1. Triangle Lemma.

Let Δ be a triangle in C with perimeter of length L. Show that if z_1, z_2 are points inside or on Δ ,

$$|z_1 - z_2| \le L.$$

[This is "obvious", in that it is geometrically clear – the point is that you are asked for a proof. Reason: this is needed in the proof of Cauchy's Theorem for Triangles.

Q2. Holomorphy and Conjugation.

If f(z) is holomorphic, show that $f(\bar{z})$ is not holomorphic.

Q3. Unions of Domains.

If D_i are domains and their intersection $\bigcap_i D_i$ is non-empty, show that their union $\bigcup_i D_i$ is a domain [i.e., is connected, as it is non-empty and open].

If D_1 , D_2 are domains with empty intersection, their union $D_1 \cup D_2$ is disconnected, by definition of disconnected, so is not a domain. So the condition of non-empty intersection is essential here.]

Q4. Connected Components.

A connected subset of a set S in the complex plane (or any topological space) is maximal if it is not a proper subset of any larger connected subset. The maximal connected subsets of S are called the *(connected) components* of S. Show (by considering all connected subsets of S containing z and using Q_3 , or otherwise) that each $z \in S$ belongs to a unique (connected) component of S. Note. (i) A connected set S is called simply connected if its complement S^c has one connected component, doubly connected if it has two, n-ply connected if it has n.

- (ii) We shall see that simply connected sets really are simpler in Complex Analysis, in connection with Cauchy's Theorem.
- Q5. Where are the following power series holomorphic [i.e., what are their circles of convergence]?
- (i) $\sum_{n=1}^{\infty} (-)^n z^n / n$, (ii) $\sum_{n=0}^{\infty} z^{5n}$, (iii) $\sum_{n=0}^{\infty} z^n / n^n$?

NHB