M2PM3 PROBLEMS 4. 12.2.2009

Q1. Triangle Lemma.
Let Δ be a triangle in \mathbf{C} with perimeter of length L. Show that if z_{1}, z_{2} are points inside or on Δ,

$$
\left|z_{1}-z_{2}\right| \leq L
$$

[This is "obvious", in that it is geometrically clear - the point is that you are asked for a proof. Reason: this is needed in the proof of Cauchy's Theorem for Triangles.]

Q2. Holomorphy and Conjugation.

If $f(z)$ is holomorphic, show that $f(\bar{z})$ is not holomorphic.
Q3. Unions of Domains.
If D_{i} are domains and their intersection $\bigcap_{i} D_{i}$ is non-empty, show that their union $\bigcup_{i} D_{i}$ is a domain [i.e., is connected, as it is non-empty and open].
[If D_{1}, D_{2} are domains with empty intersection, their union $D_{1} \cup D_{2}$ is disconnected, by definition of disconnected, so is not a domain. So the condition of non-empty intersection is essential here.]

Q4. Connected Components.

A connected subset of a set S in the complex plane (or any topological space) is maximal if it is not a proper subset of any larger connected subset. The maximal connected subsets of S are called the (connected) components of S. Show (by considering all connected subsets of S containing z and using Q3, or otherwise) that each $z \in S$ belongs to a unique (connected) component of S. Note. (i) A connected set S is called simply connected if its complement S^{c} has one connected component, doubly connected if it has two, n-ply connected if it has n.
(ii) We shall see that simply connected sets really are simpler in Complex Analysis, in connection with Cauchy's Theorem.

Q5. Where are the following power series holomorphic [i.e., what are their circles of convergence]?
(i) $\sum_{n=1}^{\infty}(-)^{n} z^{n} / n$,
(ii) $\sum_{n=0}^{\infty} z^{5 n}$,
(iii) $\sum_{n=0}^{\infty} z^{n} / n^{n}$?

