M2PM3 COMPLEX ANALYSIS: PROBLEMS 3, 5.2.2009

Q1 The Gamma function (real case). Define

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt \qquad (x>0).$$

(i) Show that the integral converges for x > 0, but not for $x \le 0$. (ii) Show that

$$\Gamma(x+1) = x\Gamma(x) \qquad (x > 0).$$

(iii) Show that

$$\Gamma(n+1) = n!$$
 $(n = 0, 1, 2, ...)$

Interpret Γ as providing a continuous extension of the factorial. (iv) Show that

$$\Gamma(1/2) = \sqrt{\pi}.$$

Q2. The Gamma function (complex case). For $z \in \mathbf{C}$, define

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt \qquad (x = \Re z > 0).$$

- (i) Show that the integral converges for $\Re z > 0$.
- (ii) Show that

$$\Gamma(z+1) = z\Gamma(z) \qquad (x = \Re z > 0).$$

(iii) Use (ii) to extend the domain of definition of $\Gamma(z)$ from $\Re z > 0$ to $\Re z > -1$. (iv) By repeated use of (iii) (or by induction), extend the domain of definition of $\Gamma(z)$ to $\Re z > -n$ (n = 1, 2, 3, ...), and so to all of the complex plane **C**. Show also that Γ so extended has complex values (i.e., in the complex plane **C** rather than the extended complex plane \mathbf{C}^*) except for z = 0, -1, -2, ...(v) Find $\Gamma(-2.5)$ and $\Gamma(3.5)$.

Q3 The Riemann zeta function ($\sigma > 1$). (i) For real σ , define (where convergent)

$$\zeta(\sigma) := \sum_{n=1}^{\infty} 1/n^{\sigma}.$$

Find the set of σ for which the series is convergent. (ii) For $s = \sigma + i\tau \in \mathbf{C}$, define (where convergent)

$$\zeta(s) := \sum_{n=1}^{\infty} 1/n^s.$$

Find the half-plane of convergence of this Dirichlet series, and its half-plane of absolute convergence.

Q4 The Riemann zeta function ($\sigma > 0$).

(i) By using the Alternating Series Test, or otherwise, show that

$$\sum_{n=1}^{\infty} (-1)^{n-1} / n^{\sigma}$$

converges for $\sigma > 0$ but not for $\sigma \le 0$. Find the half-planes of convergence and of absolute convergence of the Dirichlet series

$$\sum_{n=1}^{\infty} (-1)^{n-1} / n^s.$$

(ii) By considering the sums over n odd and even separately, or otherwise, show that

$$\sum_{n=1}^{\infty} (-1)^{n-1} / n^s = (1 - 2^{1-s})\zeta(s) \qquad (\sigma = \Re s > 1).$$

(iii) Deduce that defining

$$\zeta(s) := \frac{1}{(1-2^{1-s})} \sum_{n=1}^{\infty} (-1)^{n-1} / n^s$$

defines a function ζ for $\sigma = \Re s > 0, s \neq 1$. (iv) Show that as $s \to 1$,

$$\zeta(s) \sim \frac{1}{s-1}.$$

(You may assume that $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \frac{1}{5} \dots = \log 2$. Hint: use L'Hospital's Rule.)

NHB