M2PM3 PROBLEMS 1. 16.1.2009

Q1. (i) Show that a real number x is rational iff its decimal expansion terminates or recurs.
(ii) What can be said about the decimal expansion of m / n (cancelled down to its lowest terms)?
(iii) What about binary expansions? ternary? etc.

Q2. For $f(x):=\exp \left(-1 / x^{2}\right)$,
(i) Show (by induction or otherwise) that

$$
f^{(n)}(x)=P_{n}(1 / x) \exp \left(-1 / x^{2}\right)
$$

with $P^{(n)}$ a polynomial.
(ii) Deduce that $f^{(n)}(0)=0$ for all n.
(iii) Deduce that the Taylor expansion of f about 0 converges for all x, but to 0 and not to $f(x)$.

Q3. Spherical polar coordinates. In spherical polar coordinates (r, θ, ϕ), parametrize the unit sphere $r=1$ by (θ, ϕ) (longitude, colatitude).

Where does this coordinate representation fail to be unique, and why?
Q4. For $f_{n}(x):=n x /\left(1+n^{2} x^{2}\right)(x \in[0, \infty), n=1,2, \ldots)$:
(i) Show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$, for all $x \geq 0$, i.e. $f_{n} \rightarrow 0$ pointwise on $[0, \infty)$.
(ii) Show that $\sup _{x \in[0, \infty)} f_{n}(x)$ does not tend to 0 .
(iii) Deduce that f_{n} does not tend to 0 uniformly on $[0, \infty)$.

