## Postscript to Lecture 33, 27.3.2009

(i) $\quad \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$,
(ii) $\quad \int_{-\infty}^{\infty} \frac{u e^{u}}{1+e^{2 u}} d u=0$.

These follow easily by Real Analysis, as below (we give essentially the same calculation twice, for completeness).
(i) Put $I:=\int_{0}^{\infty}, I_{1}:=\int_{0}^{1}, I_{2}:=\int_{1}^{\infty}$. In $I_{1}$, put $y:=1 / x($ so $x=1 / y)$ :

$$
I_{1}=\int_{\infty}^{1} \frac{\log (1 / y)\left(-d y / y^{2}\right)}{1+1 / y^{2}}=-\int_{1}^{\infty} \frac{\log y}{y^{2}+1} d y
$$

multiplying top and bottom by $y^{2}$. But this is $-I_{2}$ (switching from $y$ to $x$ as integration variable). So $I=I_{1}+I_{2}=-I_{2}+I_{2}=0$.
(ii) Put $I:=\int_{-\infty}^{\infty}, I_{1}:=\int_{-\infty}^{0}, I_{2}:=\int_{0}^{\infty}$. In $I_{1}$, put $v:=-u$ :

$$
I_{1}=\int_{\infty}^{0} \frac{(-v) e^{-v}(-d v)}{1+e^{-2 v}}=-\int_{0}^{\infty} \frac{v e^{v}}{e^{2 v}+1} d v
$$

multiplying top and bottom by $e^{2 v}$. But this is $-I_{2}$ (writing $u$ for $v$ ), and we finish as before.
The keyhole contour. Recall its use in III. 8 to evaluate $I:=\int_{0}^{\infty} x^{a-1} d x /(1+$ $x)$ :
(a) We cut the plane, deleting the positive real axis: it is now impossible to go right round the origin, and this has the effect of making the many-valued complex power $z^{a}$ (which has a singularity at the origin - a branch-point) single-valued.
(b) On the upper part of the cut, $z=x, z^{a-1}=x^{a-1}$, contributing $I$ to the contour integral. On the lower part of the cut, $z=x e^{2 \pi i}, z^{a-1}=x^{a-1} e^{2 \pi i(a-1)}$, contributing $I e^{2 \pi i(a-1)}$, hence the answer as in lectures.

A change of variable $x \mapsto \log x$ in $I$ (as in going from (i) to (ii) above) maps the upper edge of the cut to the real line. It maps the lower edge of the cut to the line $y=2 \pi$, since $\log \left(x e^{2 \pi i}\right)=\log x+2 \pi i$. The small circle in the keyhole contour (joining up the left-hand ends of the upper and lower edges of the cut) corresponds to a vertical line joining $-R$ to $-R+2 \pi i$, and similarly the large circle in the keyhole (joining the right-hand ends) corresponds to the line from $R$ to $R+2 \pi i$. So we have some choice: anything we can do with a keyhole contour (and a many-valued integrand), we can do instead with a large rectangle with vertices $\pm R, \pm R+2 \pi i$ (and a single-valued integrand) - recall III.3, Translation of the line of integration. It's worth remembering this link between the keyhole and this rectangle - and deciding which route
you prefer.
Indented semicircle. Recall the indented semicircle used in lectures to evaluate $\int_{0}^{\infty}(\sin x / x) d x=\pi / 2$. We indent to avoid the pole at the origin.

This indented semicircle is also useful for $\int_{0}^{\infty}(\log x)^{2} d x /\left(1+x^{2}\right)$, as in Lecture 33 (the integral of which (i) above is a simpler version). Just as with the keyhole contour, the indented semicircle corresponds under the change of variable $x \mapsto \log x$ (which gets rid of the logarithm, which is many-valued, and has a branch-point at the origin) to the rectangle with vertices $\pm R$, $\pm R+\pi i$. Again, it is worth remembering this link - and again, deciding which route you prefer.
Note. 1. We couldn't use the indented semicircle for $I:=\int_{0}^{\infty} x^{a-1} d x /(1+x)$ because the contour would then go through the pole at $z=-1$ !.
2. We couldn't use the keyhole for (i) above. For, on the lower edge of the cut, $\log (x+2 \pi i)=\log x+2 \pi i$, and the limits from $+\infty$ to 0 would mean that the $I$ contributions we want would cancel out between the upper and lower edges of the cut. By contrast, using the indented semicircle, on the negative real axis $z=r e^{\pi i}=-r, \log z=\log r+\pi i$, so we get (writing $\mathbf{R}_{-}$ for the negative real axis, traversed left to right)

$$
\begin{aligned}
& \int_{\mathbf{R}_{-}} \frac{\log z}{1+z^{2}} d z=\int_{\infty}^{0} \frac{\log (-r)}{1+r^{2}}(-d r)=\int_{0}^{\infty} \frac{\log r+\pi i}{1+r^{2}} d r \\
& \quad=\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x+\pi i \int_{0}^{\infty} \frac{1}{1+x^{2}} d x=I+\pi i(\pi / 2)
\end{aligned}
$$

On the positive real axis we get $I$. So now the two $I$ terms we want are both present, rather than cancelling out.
Contours and choice of contour.
Recall the contours we have used: circles and ellipses; triangles, squares, rectangles; sectors; semicircles; indented versions of any of these; keyholes.

Recall also (see lecture notes at the beginning of Chapter III) that selection of a contour is not an automatic process, but is a matter of experience. This is just the same situation as when learning integration in the Sixth Form: selection of method (parts? substitution? if so, what substitution? ...) is a matter of experience, trial and error, ..., just as then.

During revision, you should familiarise yourselves with the range of examples we have covered, in lectures and on the problems/solutions. Under exam conditions, you will not be asked to go beyond things similar to examples you have met before.

