
lecture10.tex 2.2.2009 [Department’s lectures cancelled – snow]

tan z := sin z/cos z.

Note. 1. This has singularities (infinities) at the zeros of cos z, as in the real
case – that is, at points z = (n + 1

2
)π, n integer. We shall see later how to

classify such singularities.
2. Recall in the real case how, as we approach π/2 from below, the graph
of tan goes off to +∞, and then reappears from −∞ as we go through π/2.
This suggests that there is a sense in which +∞ and −∞ are ”the same”
(even though, taking the ordering of the real line into account, they are ”as
far apart as they could be”). This is true; the sense is that of Alexandrov
(one-point) compactification, which we met via stereographic projection.
What is π?

We first meet π defined as the ratio of the circumference of a circle to its
diameter. (This overlooks the need to prove that this ratio is the same for
all circles, but let that pass.) We then meet π in elementary trigonometry,
in connection with the functions sin, cos and tan. Now that we are defining
sin and cos by their power series (and tan by their ratio), we need a new
definition of π. We define π/2 to be the smallest positive root of the real
function cos x. It can be shown that π (and sin, cos, tan) thus defined is
consistent with what we know already. This should be in all the books, but
isn’t. One source is Appendix 4, p.584–7, of
E. T. Whittaker and G. N. Watson, Modern Analysis, 4th ed., CUP, 1946.
4. Hyperbolic functions. As before,

ch z :=
1

2
(ez + e−z), sh z :=

1

2
(ez − e−z), th z := sh z/ch z.

Then ch z = cos iz, i sh z = sin iz.
5. Logarithms.

In the real case, the logarithm is the inverse function of the exponential
function: for x real, log x = y means ey = x. This extends to the complex
case, with one complication. For complex z, w, log z = w means ew = z.
But since e2πi = cos 2π + i sin 2π = 1 + i.0 = 1, e2kπi = 1k = 1 for any
integer k. So if ew = z, then also ew+2πki = z. So if log z = w, then also
log z = w + 2πki: the complex logarithm is (infinitely) many-valued. It is
thus NOT a function, which must be single-valued.
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The logarithm changes its value when z winds round the origin (completes
a rotation around 0). One way to obtain single-valuedness is to prevent
this, by introducing a cut. For instance, if we remove the negative real axis
(−∞, 0) from the complex plane, one can define a single-valued logarithm on
the resulting cut plane.

Another way to make log single-valued is to make the argument arg
single-valued, by restricting θ in z = |z|eiθ (θ = arg z) to, e.g., θ ∈ (−π, π].
This gives the it principal value of arg, or log. But (as with the argument,
in Ch. I) this procedure is both arbitrary and discontinuous.
Complex nth roots of unity. For integer k, 1 = e2πik, so

(e2πik/n)n = e2πik = 1.

One can reduce to k ∈ {0, 1, 2, . . . , n − 1} without loss. This gives the n
complex nth roots of unity. In the Argand diagram, they correspond to the
vertices of a regular n-gon (n-sided polygon) with vertices equally spaced out
on the unit circle and one vertex at z = 1. As

zn − 1 = (z − 1)(zn−1 + zn−2 + . . . + z + 1),

z = 1 is one root (real), and the other n− 1 roots ω satisfy

1 + ω + ω2 + . . . + ωn−1 = 0.

The nth roots of unity form an abelian group under multiplication, (isomor-
phic to) the cyclic group of order n. [See Exam 2008 for a question on them.]
6. Complex powers. For a > 0, general real powers are defined by

ax := ex log a.

This extends to complex powers: zw := exp(w log z), or ew log z. This is many-
valued, as log is. Similarly, (z − z0)

w = ew log(z−z0). Here z0 is a singularity
(”point of bad behaviour”), called a branch-point.

Because the ambiguity of value is of the simple type ”+2πki”, one can
avoid many- valuedness of such non-functions f by regarding them as single-
valued functions, taking values not in the complex plane, but in a space R,
visualised as an infinite stack of complex planes (the sheets), appropriately
connected or spliced together so that as we increase k by going round the
origin, we rise up to the next sheet. Such an R is a Riemann surface (G. F.
B. Riemann (1826-66) in 1851; Felix Klein (1849-1925) in 1882).
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