M2PM3 COMPLEX ANALYSIS: SOLUTIONS TO EXAMINATION, 2008

Q1. (i) $(1+2 i)^{2}=1+4 i-4=-3+4 i$.
The quadratic $z^{2}+2 i z+2-4 i$ has roots

$$
z=\frac{-2 i \pm \sqrt{-4-4(2-4 i)}}{2}
$$

i.e. $-i \pm \frac{1}{2} \sqrt{-4-8+16 i}=-i \pm \frac{1}{2} \sqrt{-12+16 i}=-i \pm \sqrt{-3+4 i}=-i \pm(1+2 i)$, giving roots

$$
1+i \text { or }-1-3 i
$$

(ii) The roots are where $z^{4}=-1=e^{i \pi}=e^{(2 n+1) i \pi}$. These are $z=e^{i \pi / 4}(n=0)$, $e^{3 i \pi / 4}(n=1), e^{5 i \pi / 4}=e^{-3 i \pi / 4}(n=2), e^{7 i \pi / 4}=e^{-i \pi / 4}(n=3)$.

In the Argand diagram, these are the points on the unit circle with arguments $\pm \pi / 4, \pm 3 \pi / 4$ (the vertices of a square with diagonals $y= \pm x$).
(a) The complex factorization into four linear factors is

$$
z^{4}+1=\left(z-e^{i \pi / 4}\right)\left(z-e^{-i \pi / 4}\right)\left(z-e^{3 i \pi / 4}\right)\left(z-e^{-3 i \pi / 4}\right)
$$

(b) The real factorization into two quadratics is
$z^{4}+1=\left(z^{2}-2 z \cos \pi / 4+1\right)\left(z^{2}-2 z \cos 3 \pi / 4+1\right)=\left(z^{2}-\sqrt{2} z+1\right)\left(z^{2}+\sqrt{2} z+1\right)$.
(iii) With γ the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ parametrized by $x=a \cos \theta, y=b \sin \theta$, $\int_{\gamma} d z / z=2 \pi i$ by Cauchy's Residue Theorem, since $1 / z$ has residue 1 at 0 .
So as $z=a \cos \theta+i b \sin \theta$ gives $d z=(-a \sin \theta+i b \cos \theta) d \theta$,

$$
\begin{gathered}
2 \pi i=\int_{0}^{2 \pi} \frac{-a \sin \theta+i b \cos \theta}{a \cos \theta+i b \sin \theta} d \theta \\
=\int_{0}^{2 \pi} \frac{(-a \sin \theta+i b \cos \theta)(a \cos \theta-i b \sin \theta)}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta \\
=\int_{0}^{2 \pi} \frac{\left(b^{2}-a^{2}\right) \sin \theta \cos \theta+i a b\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta .
\end{gathered}
$$

Equating imaginary parts,

$$
\int_{0}^{2 \pi} \frac{a b}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta=2 \pi
$$

whence the result on dividing by $a b$.
[All unseen]
Note: $z=x+i y=a \cos \theta+i b \sin \theta$ from the hint; z (at least) is needed in the denominator, to get a and b there; $d z=(-a \sin \theta+i b \cos \theta) d \theta$. So we need (at least) $d z / z=[(-a \sin \theta+i b \cos \theta) /(a \cos \theta+i b \sin \theta)] d \theta$. On multiplying top and bottom by $(a \cos \theta-i b \sin \theta)$ to make the denominator real, it turns out that this is all we need (see above). A direct attack using $z=e^{i \theta}$ is possible, but this is harder - it is geared to the unit circle, not the ellipse as here. [Note that the result is immediate when $a=b$ and the ellipse is a circle.]

Q2. (i) The Cauchy-Riemann equations (C-R) are $u_{x}=v_{y}, u_{y}=-v_{x}$.
(ii) A harmonic function is one for which the Laplacian $\Delta:=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$ vanishes.
Differentiating partially wrt x :

$$
\begin{array}{rlr}
u_{x x} & =v_{y x} \quad(\mathrm{C}-\mathrm{R}) \\
& =v_{x y} \quad \text { (by continuity of partials: } f \text { is holomorphic) } \\
& =-u_{y y} \quad \text { (C-R). }
\end{array}
$$

So $\Delta u=u_{x x}+u_{y y}=0$, and u is harmonic. Similarly, v is harmonic.
(iii) Given u harmonic, integrate $v_{y}=u_{x}$ wrt y :

$$
v=\int u_{x} d y+g(x)
$$

(the additive constant of integration may involve x). Differentiate wrt x :

$$
v_{x}=(\partial / \partial x)\left(\int u_{x} d y\right)+g^{\prime}(x)
$$

As $v_{x}=-u_{y}$, this gives

$$
g^{\prime}(x)=-u_{y}-(\partial / \partial x)\left(\int u_{x} d y\right)
$$

Integrate to find g, hence v, hence $f=u+i v$.
(iv) $u=x^{3}-3 x y^{2}: v_{y}=u_{x}=3 x^{2}-3 y^{2}$. Integrate wrt y : $v=3 x^{2} y-y^{3}+g(x)$. Differentiate wrt $x: v_{x}=6 x y+g^{\prime}(x)=-u_{y}=6 x y$. So $g^{\prime}=0, g=$ constant, c (real), w.l.o.g. $0, v=3 x^{2} y-y^{3}$. $f=u+i v=x^{3}+3 i x^{2} y-3 x y^{2}-i y^{3}=(x+i y)^{3}$: $f(z)=z^{3}$.
(v) $u=x /\left(x^{2}+y^{2}\right): u_{y}=-2 x y /\left(x^{2}+y^{2}\right)^{2}=-v_{x}\left(\right.$ simpler than $\left.u_{x}\right), v_{x}=$ $2 x y /\left(x^{2}+y^{2}\right)^{2}$. So

$$
\begin{gathered}
v=y \int \frac{2 x}{\left(x^{2}+y^{2}\right)^{2}} d x+g(y)=y \int \frac{d\left(x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+g(y)=-\frac{y}{\left(x^{2}+y^{2}\right)}+g(y) \\
v_{y}=-\frac{1}{\left(x^{2}+y^{2}\right)}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime}(y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime}(y)
\end{gathered}
$$

By C-R,

$$
v_{y}=u_{x}=\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Comparing, $g^{\prime}=0, g=c$ constant, w.l.o.g. 0 . So

$$
v=-\frac{y}{x^{2}+y^{2}}, \quad f=u+i v=\frac{x-i y}{x^{2}+y^{2}}=\frac{1}{x-i y}: \quad f(z)=1 / z
$$

(vi) As $f(z)=z^{3}$ is holomorphic everywhere (entire), its real part u in (iv) is harmonic, being the real part of a holomorphic function. As $f(z)=1 / z$ is holomorphic except at 0 , its real part u in (v) is likewise harmonic except at the origin. [(i) - (iii): Lectures; (iv) - (vi): Unseen]

Q3. (i) Cauchy's integral formula:

$$
f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)} d z
$$

(ii) For $r>0$ so small that the circle $\gamma(a, 2 r)$ with centre a and radius $2 r$ is contained in the interior $I(\gamma)$ of γ,

$$
\int_{\gamma} \frac{f(z)}{(z-a)} d z=\int_{\gamma(a, 2 r)} \frac{f(z)}{(z-a)} d z
$$

by the Deformation Lemma. Similarly, for $|h|<r$, with $a+h$ in place of a. Combining,

$$
\begin{gathered}
f(a+h)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a-h)} d z, \quad f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)} d z \\
\frac{f(a+h)-f(a)}{h}=\frac{1}{2 \pi i h} \int_{\gamma(a, 2 r)} f(z)\left(\frac{1}{z-a-h}-\frac{1}{z-a}\right) d z \\
=\frac{1}{2 \pi i} \int_{\gamma(a, 2 r)} \frac{f(z)}{(z-a-h)(z-a)} d z \\
\rightarrow \frac{1}{2 \pi i} \int_{\gamma(a, 2 r)} \frac{f(z)}{(z-a)^{2}} d z \quad(h \rightarrow 0)
\end{gathered}
$$

estimating the difference between the two integrands on the right using

$$
\frac{1}{(z-a-h)(z-a)}-\frac{1}{(z-a)^{2}}=\frac{h}{(z-a)^{2}(z-a-h)} \sim \frac{h}{(z-a)^{2}} \quad(h \rightarrow 0)
$$

and the ML Inequality.
So $f^{\prime}(a)$ exists, $=$ RHS.
We may replace $\gamma(a, 2 r)$ by γ in RHS, by the Deformation Lemma, giving

$$
f^{\prime}(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{2}} d z
$$

(iii) Similarly,

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{(n+1)}} d z .
$$

(iv) With $\gamma=\gamma(a, R),\left|f^{(n)}(a)\right| \leq n!M / R^{n}$ follows by the ML Inequality.
(v) $f(z)$ is entire if it is holomorphic throughout \mathbf{C} (i.e., no singularities in the complex plane).
(vi) If f is entire and $|f(z)| \leq c|z|^{k}$ for some c and $|z|$ large, by (iv) with M replaced by $c R^{k},\left|f^{(n)}(a)\right| \leq n!c R^{k} / R^{n}$. Let $R \rightarrow \infty$: for $n>k, f^{(n)}(a)=0$ for each a, so $f^{(n)} \equiv 0$, so f is a polynomial of degree at most k.
[Seen: (i) - (v) in Lectures, (vi) in Problems 6]

Q4. (i) Use as contour the unit circle γ, parametrized by $z=e^{i \theta}$. So $d \theta=d z / i z$, $\cos \theta=\left(z+z^{-1}\right) / 2$.
To show:

$$
\begin{align*}
I & :=\int_{0}^{2 \pi} \frac{e^{3 i \theta}}{5-4 \cos \theta} d \theta=\frac{\pi}{12} \tag{*}\\
I & =\int_{\gamma} \frac{z^{3}}{i z[5-2(z+1 / z)]} d z
\end{align*}
$$

The denominator in the integrand is
$i z[5-2(z+1 / z)]=i\left[-2+5 z-2 z^{2}\right]=-i\left[2 z^{2}-5 z+2\right]=-i(2 z-1)(z-2)=-2 i\left(z-\frac{1}{2}\right)(z-2)$.
So

$$
I=\frac{i}{2} \int_{\gamma} \frac{z^{3}}{\left(z-\frac{1}{2}\right)(z-2)} d z=\frac{i}{2} \int_{\gamma} f(z) d z
$$

say. Now $f(z)=z^{3} /[(z-1 / 2)(z-2)]$ has simple poles at $z=1 / 2, z=2$, only the first of which is inside γ.
By the Cover-Up Rule,

$$
\operatorname{Res}_{1 / 2} f=\frac{(1 / 2)^{3}}{[(1 / 2)-2]}=1 /[8(-3 / 2)]=-1 / 12
$$

So by Cauchy's Residue Theorem, $I=(1 / 2) \cdot 2 \pi i \cdot(-1 / 12)=\pi / 12$, proving $(*)$. Now take real and imaginary parts.
Note. The cosine integral can be evaluate separately, using $\cos 3 \theta=(1 / 2)\left(z^{3}+\right.$ z^{-3}), but this is harder as it introduces a triple pole at $z=0$. The sine integral is clearly 0 (use limits $-\pi$ and π : odd integrand, symmetrical limits).
(ii) Use as contour γ the interval $\gamma_{1}:=[-R, R]$ closed by the semi-circle γ_{2} on this base in the upper half-plane, and as function $f(z):=1 /\left(z^{2}+1\right)^{2}$.
This has double poles at $z= \pm i$, only $z=i$ being inside γ.

$$
\int_{\gamma_{1}} f=\int_{-R}^{R} \rightarrow I: \int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}} \quad(R \rightarrow \infty)
$$

the required integral. As $|f|=O\left(1 / R^{4}\right)$ on $\gamma_{2}, \int_{\gamma_{2}} f=O\left(1 / R^{3}\right) \rightarrow 0$ as $R \rightarrow \infty$, by the ML Inequality.
For z near i, write $z=i+\zeta, \zeta$ small. Then $z^{2}+1=(i+\zeta)^{2}+1=-1+2 i \zeta+$ $\zeta^{2}+1=2 i \zeta+\zeta^{2}$, so
$f(z)=\frac{1}{\left(1+z^{2}\right)^{2}}=\frac{1}{\left(2 i \zeta+\zeta^{2}\right)^{2}}=\frac{1}{\zeta^{2}} \cdot \frac{1}{(-4)} \cdot\left(1+\frac{\zeta}{2 i}\right)^{-2}=-\frac{1}{4 \zeta^{2}} \cdot\left(1-\frac{\zeta}{i}+O\left(\zeta^{2}\right)\right)$.
$\operatorname{Res}_{i} f=$ coeff. $1 / \zeta=-\frac{1}{4} \cdot \frac{(-1)}{i}=\frac{1}{4 i}=-i / 4: \quad I=2 \pi i \operatorname{Res}_{i} f=2 \pi i \cdot(-i / 4)=\pi / 2$.
Combining: by Cauchy's Residue Theorem, $I=\pi / 2$.
(The residue at the double pole may also be evaluated by differentiation.)
Note: The integral can be also be evaluated by real analysis: use $x=\tan \theta$.
[All unseen - similar seen]

