M2PM3 EXAMINATION 2009

Q1. (i) If $z=1+i \sqrt{3}$, find (a) z in polar form; (b) z^{5} in polar and cartesian forms; (c) z^{-1} in polar and cartesian forms.
(ii) Find and classify the singularities of $f(z)=1 /(1+\cosh z)$.
(iii) If f has a pole of order k at a, show that f^{\prime} has a pole of order $k+1$ at a.

Q2. (i) Define a star-domain D with star-centre z_{0}.
(ii) Prove the theorem of the primitive, that if f is holomorphic in a star-domain D with star-centre z_{0}, then (with $\left[z_{0}, z\right]$ the line segment from z_{0} to z)

$$
F(z):=\int_{\left[z_{0}, z\right]} f(w) d w
$$

has $F^{\prime}=f$ in D (you may quote Cauchy's theorem for triangles).
(iii) Let

$$
f(z):=\int_{[1, z]} d w / w \quad(z \in D)
$$

where D is the largest star-domain with star-centre 1 for which the above defines f as a convergent integral.
(a) Find D.
(b) Show that if $g(z):=e^{z}, h(z):=f(g(z))$, then

$$
h^{\prime}(z)=1, \quad h(z)=z
$$

Q3. (i) State and prove the Cauchy-Taylor theorem for a function f holomorphic in an open disc D centre a radius R (you may quote the Cauchy integral formula).
(ii) For a real, define $\binom{a}{n}:=a(a-1) \ldots(a-n+1) / n$! Show that

$$
(1+z)^{a}=\sum_{n=0}^{\infty}\binom{a}{n} z^{n} \quad(|z|<1)
$$

Check that the radius of convergence of the power series on the right is indeed 1.
Q4. (i) For γ the circle centre 0 radius 2, find

$$
\int_{\gamma} \frac{\sin z}{\left(z^{2}+1\right)} d z
$$

(ii) Show that for $p, q \geq 0$,

$$
\int_{-\infty}^{\infty} \frac{\cos p x-\cos q x}{x^{2}} d x=\pi(q-p)
$$

Hence or otherwise show that

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x=\frac{\pi}{2}
$$

N. H. Bingham

