M2PM3 COURSEWORK 2 SOLUTIONS, 5.3.2009

Q1. $\Gamma(x)\Gamma(y) = \int_0^\infty t^{x-1}e^{-t}dt$. $\int_0^\infty u^{y-1}e^{-u}du$. Putting u = tv, this gives

$$\Gamma(x)\Gamma(y) = \int_0^\infty t^{x-1} e^{-t} dt. \int_0^\infty t^{y-1} e^{-tv} v^{y-1}.t dv,$$

or changing the order of integration and writing w := t(1+v),

$$\int_0^\infty v^{y-1} dv \int_0^\infty t^{x+y-1} e^{-t(1+v)} dv = \int_0^\infty w^{x+y-1} e^{-w} dw \cdot \int_0^\infty \frac{v^{y-1}}{(1+v)^{x+y}} dv \cdot \int_0^\infty$$

As the first integral on RHS is $\Gamma(x+y)$, this gives

$$\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^\infty \frac{v^{y-1}}{(1+v)^{x+y}} dv,$$

giving the first part. For the second part, make the change of variable u := 1/(1+v); then 1 - u = v/(1+v), $du = -dv/(1+v)^2$, and $v = 0, \infty$ correspond to u = 1, 0. So

$$\int_0^\infty \frac{v^{y-1}}{(1+v)^{x+y}} dv = \int_0^1 (1-u)^{x-1} u^{y-1} du,$$

which gives the result as LHS, and so RHS, is symmetrical between x and y.

Q2. If X, Y have densities f, g, X + Y has density h, where

$$h(x) = \int_0^x f(y)g(x-y)dy$$
 (x > 0).

Here $f(x) = x^{\lambda-1}e^{-x}/\Gamma(\lambda)$, $g(x) = x^{\mu-1}e^{-x}/\Gamma(\mu)$, so

$$\begin{split} h(x) &= \int_0^\infty f(x-y)g(y)dy = \int_0^\infty \frac{(x-y)^{\lambda-1}e^{-(x-y)}}{\Gamma(\lambda)} \cdot \frac{y^{\mu-1}e^{-y}}{\Gamma(\mu)}dy \\ &= \frac{e^{-x}}{\Gamma(\lambda)\Gamma(\mu)} \cdot \int_0^x (x-y)^{\lambda-1}y^{\mu-1}dy = \frac{x^{\lambda+\mu-1}e^{-x}}{\Gamma(\lambda)\Gamma(\mu)} \cdot \int_0^1 (1-u)^{\lambda-1}u^{\mu-1}du = \frac{x^{\lambda+\mu-1}e^{-x}}{\Gamma(\lambda)\Gamma(\mu)} \cdot B(x,y), \end{split}$$

putting y = xu in the integral. This is $c.x^{\lambda+\mu-1}e^{-x}$ for some constant c. So: (i) h is a Gamma density, $\Gamma(\lambda + \mu)$, from its functional form, (ii) $c = 1/\Gamma(\lambda + \mu)$ (this is the constant required to make the density integrate to 1, as it must). The result follows on equating the two expressions for the constant c.

Q3 [4]. (i) [1] For f holomorphic, f = u + iv, u and v are differentiable w.r.t. x and y (as in lectures: for $\partial/\partial x$, take the difference $z - z_0$ real; for $\partial/\partial y$, take it imaginary).

(ii) [1]
$$f_x = u_x + iv_x$$
, $f_y = u_y + iv_y$, so
 $\partial f/\partial z := \frac{1}{2}(f_x - if_y) = \frac{1}{2}[(u_x + iv_x) - i(u_y + iv_y)] = \frac{1}{2}(u_x + v_y) + \frac{1}{2}i(v_x - u_y).$

By the Cauchy-Riemann equations, this is $u_x + iv_x$, f'(z) (lectures). (iii) [1]

$$\frac{\partial f}{\partial \bar{z}} := \frac{1}{2}(f_x + if_y) = \frac{1}{2}[(u_x + iv_x) + i(u_y + iv_y)] = \frac{1}{2}(u_x - v_y) + \frac{1}{2}i(v_x + u_y).$$

By the Cauchy-Riemann equations, this is 0.

(iv) [1] As above in (iii), $\partial f/\partial \bar{z} = 0$ is equivalent to the Cauchy-Riemann equations. This and continuity of partials gives differentiability, i.e. holomorphy, as in lectures.

Q4 [4].
$$d(\cot z)/dz = \csc^2 z$$
 [1]. So as the unit circle is closed,
 $\int_{C(0,1)} \csc^2 z dz = \int_{C(0,1)} \frac{d}{dz} \cot z dz = \int_{C(0,1)} d \cot z = [\cot z]_{C(0,1)} = 0,$

by the Fundamental Theorem of Calculus [2].

Cauchy's Theorem does *not* apply, as $cosec^2 z$ has a singularity at 0 (a double pole) [1]. [Cauchy's Residue Theorem does apply (the residue is 0 as the pole is double rather than single) – but the lecture for this is after the deadline!]

Q5 [4]. Parametrize
$$C(0,1)$$
 by $e^{i\theta}$, $0 \le \theta \le 2\pi$. For $f(z) = (Im \ z)^2$,
 $z = e^{i\theta}$, $f(z) = \sin^2 \theta$ [1], so the integral is
 $I = \int_0^{2\pi} \sin^2 \theta . i e^{i\theta} d\theta = -\int_0^{2\pi} \sin^3 \theta d\theta + i \int_0^{2\pi} \cos \theta \sin^2 \theta dt = I_1 + iI_2$, say [1].
 $I_1 = \int_0^{2\pi} (1 - \cos^2 \theta) d \cos \theta = [\cos \theta - \frac{1}{3} \cos^3 \theta]_0^{2\pi} = 0$, by periodicity of cos.
Similarly, $I_2 = \int_0^{2\pi} \sin^2 \theta d \sin \theta = \frac{1}{3} [\sin^2 \theta]_0^{2\pi} = 0$ [1].
Cauchy's Theorem does not apply since $Im \ z$ is not holomorphic [1].

Cauchy's Theorem does not apply since Im z is not holomorphic [1].

NHB