
M2PM3 COURSEWORK 2 SOLUTIONS, 5.3.2009

Q1. Γ(x)Γ(y) =
∫∞
0 tx−1e−tdt.

∫∞
0 uy−1e−udu. Putting u = tv, this gives

Γ(x)Γ(y) =
∫ ∞

0
tx−1e−tdt.

∫ ∞

0
ty−1e−tvvy−1.tdv,

or changing the order of integration and writing w := t(1 + v),

∫ ∞

0
vy−1dv

∫ ∞

0
tx+y−1e−t(1+v)dv =

∫ ∞

0
wx+y−1e−wdw.

∫ ∞

0

vy−1

(1 + v)x+y
dv.

As the first integral on RHS is Γ(x + y), this gives

Γ(x)Γ(y)

Γ(x + y)
=

∫ ∞

0

vy−1

(1 + v)x+y
dv,

giving the first part. For the second part, make the change of variable
u := 1/(1 + v); then 1 − u = v/(1 + v), du = −dv/(1 + v)2, and v = 0,∞
correspond to u = 1, 0. So

∫ ∞

0

vy−1

(1 + v)x+y
dv =

∫ 1

0
(1− u)x−1uy−1du,

which gives the result as LHS, and so RHS, is symmetrical between x and y.

Q2. If X, Y have densities f , g, X + Y has density h, where

h(x) =
∫ x

0
f(y)g(x− y)dy (x > 0).

Here f(x) = xλ−1e−x/Γ(λ), g(x) = xµ−1e−x/Γ(µ), so

h(x) =
∫ ∞

0
f(x− y)g(y)dy =

∫ ∞

0

(x− y)λ−1e−(x−y)

Γ(λ)
.
yµ−1e−y

Γ(µ)
dy

=
e−x

Γ(λ)Γ(µ)
.
∫ x

0
(x−y)λ−1yµ−1dy =

xλ+µ−1e−x

Γ(λ)Γ(µ)
.
∫ 1

0
(1−u)λ−1uµ−1du =

xλ+µ−1e−x

Γ(λ)Γ(µ)
.B(x, y),

putting y = xu in the integral. This is c.xλ+µ−1e−x for some constant c. So:
(i) h is a Gamma density, Γ(λ + µ), from its functional form,
(ii) c = 1/Γ(λ + µ) (this is the constant required to make the density inte-
grate to 1, as it must).
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The result follows on equating the two expressions for the constant c.

Q3 [4]. (i) [1] For f holomorphic, f = u+ iv, u and v are differentiable w.r.t.
x and y (as in lectures: for ∂/∂x, take the difference z − z0 real; for ∂/∂y,
take it imaginary).
(ii) [1] fx = ux + ivx, fy = uy + ivy, so

∂f/∂z :=
1

2
(fx− ify) =

1

2
[(ux + ivx)− i(uy + ivy)] =

1

2
(ux +vy)+

1

2
i(vx−uy).

By the Cauchy-Riemann equations, this is ux + ivx, f ′(z) (lectures).
(iii) [1]

∂f/∂z̄ :=
1

2
(fx + ify) =

1

2
[(ux + ivx)+ i(uy + ivy)] =

1

2
(ux−vy)+

1

2
i(vx +uy).

By the Cauchy-Riemann equations, this is 0.
(iv) [1] As above in (iii), ∂f/∂z̄ = 0 is equivalent to the Cauchy-Riemann
equations. This and continuity of partials gives differentiability, i.e. holo-
morphy, as in lectures.

Q4 [4]. d(cot z)/dz = cosec2z [1]. So as the unit circle is closed,
∫

C(0,1)
cosec2zdz =

∫

C(0,1)

d

dz
cot zdz =

∫

C(0,1)
d cot z = [cot z]C(0,1) = 0,

by the Fundamental Theorem of Calculus [2].
Cauchy’s Theorem does not apply, as cosec2z has a singularity at 0 (a

double pole) [1]. [Cauchy’s Residue Theorem does apply (the residue is 0 as
the pole is double rather than single) – but the lecture for this is after the
deadline!]

Q5 [4]. Parametrize C(0, 1) by eiθ, 0 ≤ θ ≤ 2π. For f(z) = (Im z)2,
z = eiθ, f(z) = sin2 θ [1], so the integral is

I =
∫ 2π

0
sin2 θ.ieiθdθ = −

∫ 2π

0
sin3 θdθ + i

∫ 2π

0
cos θ sin2 θdt = I1 + iI2, say [1].

I1 =
∫ 2π
0 (1 − cos2 θ)d cos θ = [cos θ − 1

3
cos3 θ]2π

0 = 0, by periodicity of cos.

Similarly, I2 =
∫ 2π
0 sin2 θd sin θ = 1

3
[sin2 θ]2π

0 = 0 [1].
Cauchy’s Theorem does not apply since Im z is not holomorphic [1].
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