M2PM3 ASSESSED COURSEWORK 2, 2009

Set Th 26 February 2009; deadline NOON, Wed 4 March 2009
Q1 [4]. Euler's Beta integral for the Gamma function: Analysis.
Recall that $\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t(x>0)$. Show that for $x, y>0$,

$$
\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=B(x, y):=\int_{0}^{\infty} \frac{v^{y-1}}{(1+v)^{x+y}} d v=\int_{0}^{1} u^{x-1}(1-u)^{y-1} d u
$$

$(B(x, y)$ is called the Beta function). In particular, as $\Gamma(1)=0!=1$ and the LHS is symmetrical in x and y :

$$
\Gamma(x) \Gamma(1-x)=\int_{0}^{\infty} \frac{v^{x-1}}{(1+v)} d v \quad(0<x<1)
$$

[We shall use this in Ch. III to prove $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$.]
Suggested method. Write $\Gamma(x) \Gamma(y)$ as a product of integrals over $(0, \infty)$, in t and u say. Change integration variables to v and w, where $u=t v$, $t(1+v)=w$, and interchange the order of integration.

Q2 [4]. Euler's Beta integral for the Gamma function: Probability.
We quote that
(i) A non-negative function $f(x)$ on the line that integrates to 1 is called a probability density function (or density for short). Some (not all) random variables have density functions.
(ii) If X, Y are independent random variables with densities f, g, then $X+Y$ has a density h, given by the convolution formula

$$
h(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y .
$$

The Gamma density in Probability Theory with parameter $\lambda>0$ is defined by

$$
f(x):=x^{\lambda-1} e^{-x} / \Gamma(\lambda) \quad(x>0), \quad 0 \quad(x \leq 0)
$$

Let X, Y be independent random variables, Gamma distributed with parameters λ, μ.
(i) [2]. Show that $X+Y$ is also Gamma distributed, with parameter $\lambda+\mu$.
(ii) [2]. Deduce that the Beta integral follows (identify the constant - a density must integrate to 1).

Q3 [4]. For $f(z)(z=x+i y)$ regarded as a function of x and y, write

$$
\frac{\partial f}{\partial z}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

Show that
(i) [1] for f holomorphic in a domain D, these partial derivatives exist (so the above are well-defined);
(ii) [1] $\partial f / \partial z=f^{\prime}$;
(iii) [1] $\partial f / \partial \bar{z}=0$.
(iv) [1] If f has continuous partials and $\partial f / \partial \bar{z}=0$, show that f is holomorphic.

Q4 [4]. For $C(0,1)$ the unit circle, show that

$$
\int_{C(0,1)} \operatorname{cosec}^{2} z d z=0
$$

Q5 [4]. Show that

$$
\int_{C(0,1)}(\operatorname{Im} z)^{2} d z=0
$$

Note. Cauchy's Theorem does not apply in either of Questions 4 or 5 and you should say why not.

NHB

