M2PM3 SOLUTIONS TO ASSESSED COURSEWORK 1, 2009

5.2.2009

Q1. (i)

$$
\begin{aligned}
a_{1} v_{1}+\ldots a_{n} v_{n} & =s_{1} v_{1}+\left(s_{2}-s_{1}\right) v_{1}+\ldots+\left(s_{n}-s_{n-1}\right) v_{n} \\
& =s_{1}\left(v_{1}-v_{2}\right)+s_{2}\left(v_{2}-v_{3}\right)+\ldots+s_{n-1}\left(v_{n-1}-v_{n}\right)+s_{n} v_{n}
\end{aligned}
$$

(ii) As $v_{n} \downarrow, v_{k}-v_{k+1} \geq 0$. This and $m \leq s_{k} \leq M$ give
$m\left(v_{k}-v_{k+1}\right) \leq s_{k}\left(v_{k}-v_{k+1}\right) \leq M\left(v_{k}-v_{k+1}\right) \quad(k=1, \ldots, n-1), \quad m v_{n} \leq s_{n} v_{n} \leq M v_{n}$.
Sum over $k=1$ to $n-1$: the left and right telescope. Using (i) for the middle gives

$$
m v_{1} \leq a_{1} v_{1}+\ldots+a_{n} v_{n} \leq M v_{1}
$$

(iii) If $\left|s_{n}\right| \leq M$ for all n, taking $m=-M$ in (ii) gives

$$
!a_{1} v_{1}+\ldots+a_{n} v_{n} \mid \leq M v_{1}
$$

Q2. As $v_{n} \downarrow 0$: $\forall \epsilon>0 \exists N$ such that for $n \geq N, 0 \leq v_{n}<\epsilon$. As $\left|\sum_{1}^{n} a_{k}\right| \leq M$ for all n (for some M) - given -

$$
\left|\sum_{m}^{n} a_{k}\right|=\left|\sum_{1}^{n} a_{k}-\sum_{1}^{m-1} a_{k}\right| \leq 2 M \quad \forall m, n \quad(m \leq n) .
$$

So by Q1(iii), $\left|\sum_{m}^{n} a_{k} v_{k}\right| \leq 2 M \epsilon$ for all $m, n \geq N$. By Cauchy's General Principle, $\sum a_{n} v_{n}$ converges (as it is Cauchy).

Q3. As the series $\sum a_{n}$, its sequence $s_{n}:=\sum_{1}^{n} a_{k}$ of partial sums converges. So $\left(s_{n}\right)$ is bounded. As $v_{n} \downarrow \ell, w_{n}:=v_{n}-\ell \downarrow 0$. So by Dirichlet's Test, $\sum a_{n} w_{n}$ converges, to c say:

$$
a_{1} w_{1}+\ldots a_{n} w_{n} \rightarrow c \quad(n \rightarrow \infty)
$$

That is

$$
a_{1} v_{1}+\ldots a_{n} v_{n}-\ell\left(a_{1}+\ldots+a_{n}\right) \rightarrow c \quad(n \rightarrow \infty)
$$

But $a_{1}+\ldots a_{n} \rightarrow b:=\sum_{1}^{\infty} a_{k}$. So

$$
a_{1} v_{1}+\ldots a_{n} v_{n} \rightarrow c+\ell . b \quad(n \rightarrow \infty)
$$

i.e. $\sum a_{n} v_{n}$ converges.

Q4. (i) $\left|n^{s}\right|=\left|e^{s \log n}\right|=\left|e^{(\sigma+i \tau) \log n}\right|=e^{\sigma \log n}=n^{\sigma}$.
(ii) Absolute convergence of $\sum a_{n} / n^{s}$ depends only on $\left|a_{n}\right|$ and $\left|n^{s}\right|=n^{\sigma}$, so depends on s only through σ. If $\sigma_{2} \leq \sigma_{1}$, then $\left|a_{n} / n^{s_{2}}\right|=\left|a_{n}\right| / n^{\sigma_{2}} \leq\left|a_{n}\right| / n^{\sigma_{1}}=$
$\left|a_{n} / n^{s_{1}}\right|$. So by the Comparison Test, absolute convergence for s_{1} implies absolute convergence for s_{2}.
(iii) So any point of A^{c} is to the left of any point of A : if it were to the right, this would contradict (ii).
(iv) So A^{c}, A partition the real line, with A^{c} lying to the left of A. The two sets have as common boundary a point σ_{a}, the sup of A^{c} and the inf of A. By definition of A, A^{c}, the series is absolutely convergent in Res $>\sigma_{a}$ and not (so conditionally convergent or divergent) in Res $<\sigma_{a}$.
Note. 1. We make no statement about what happens for $\operatorname{Res}=\sigma_{a}$ (as we shall not need this case).
2. The above construction of σ_{a} is called a Dedekind cut (or Dedekind section) - as in Dedekind's construction of the real line \mathbf{R}.

Q5 (i). $\left|n^{s}-(n+1)^{-s}\right|=\left|e^{-s \log n}-e^{-s \log (n+1)}\right|=\left|\int_{\log n}^{\log (n+1)} s e^{-u s} d u\right| \leq$ $|s| \int_{\log n}^{\log (n+1)} e^{-\sigma u} d u=(|s| / \sigma)\left(n^{-\sigma}-(n+1)^{-\sigma}\right)$.
(ii) By replacing $a_{n} / n^{s_{1}}$ by a_{n}, we can w.l.o.g. take $s_{1}=0$. As $\sum a_{n}$ converges, by Cauchy's General Principle of Convergence, for all $\epsilon>$ there exists N such that for all $m, n \geq N,\left|a_{m}+\ldots+a_{n}\right|<\epsilon$. By partial summation, writing s_{n} for $\sum_{1}^{n} a_{k}$ as before,

$$
\sum_{m}^{n} a_{k} / k^{s}=\sum_{m}^{n-1}\left(s_{k}-s_{m}\right)\left(k^{-s}-(k+1)^{-s}\right)+\left(s_{n}-s_{m}\right) n^{-s} .
$$

So

$$
\begin{aligned}
& |L H S| \leq \sum_{m}^{n-1}\left|s_{k}-s_{m}\right| \cdot\left|k^{-s}-(k+1)^{-s}\right|+\left|s_{n}-s_{m}\right| \cdot\left|n^{-s}\right| \\
& <\epsilon \cdot \frac{|s|}{\sigma} \sum_{m}^{n-1}\left(1 / k^{\sigma}-1 /(k+1)^{\sigma}\right)+\epsilon \cdot 1 / n^{\sigma} \\
& \quad=\epsilon \cdot \frac{|s|}{\sigma} \cdot\left(1 / m^{\sigma}-1 / n^{\sigma}\right)<\frac{\epsilon|s|}{\sigma m^{\sigma}}
\end{aligned}
$$

as the sum telescopes. So

$$
|L H S| \rightarrow 0 \quad(m \rightarrow \infty)
$$

if $\sigma>0$. This proves (ii) (recall we reduced first to $s_{1}=0, \sigma_{1}=0$).
(iii) This now follows as in Q4.

Note. 1. Absolute convergence implies convergence, but not conversely in general. The two half-planes may differ.
2. They do differ in the case of $\sum_{n=1}^{\infty}(-)^{n-1} / n^{s}$, which has $\sigma_{a}=1$ and $\sigma_{c}=0$. This series is important in connection with the Riemann zeta function $\sum_{n=1}^{\infty} 1 / n^{s}$ of Analytic Number Theory; see Problems 3.

