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Q1. (i)

a1v1 + . . . anvn = s1v1 + (s2 − s1)v1 + . . . + (sn − sn−1)vn

= s1(v1 − v2) + s2(v2 − v3) + . . . + sn−1(vn−1 − vn) + snvn.

(ii) As vn ↓, vk − vk+1 ≥ 0. This and m ≤ sk ≤ M give

m(vk−vk+1) ≤ sk(vk−vk+1) ≤ M(vk−vk+1) (k = 1, . . . , n−1), mvn ≤ snvn ≤ Mvn.

Sum over k = 1 to n− 1: the left and right telescope. Using (i) for the middle
gives

mv1 ≤ a1v1 + . . . + anvn ≤ Mv1.

(iii) If |sn| ≤ M for all n, taking m = −M in (ii) gives

!a1v1 + . . . + anvn| ≤ Mv1.

Q2. As vn ↓ 0: ∀ε > 0 ∃N such that for n ≥ N , 0 ≤ vn < ε. As |∑n
1 ak| ≤ M

for all n (for some M) – given –

|
n∑
m

ak| = |
n∑
1

ak −
m−1∑

1

ak| ≤ 2M ∀m,n (m ≤ n).

So by Q1(iii), |∑n
m akvk| ≤ 2Mε for all m,n ≥ N . By Cauchy’s General Prin-

ciple,
∑

anvn converges (as it is Cauchy).

Q3. As the series
∑

an, its sequence sn :=
∑n

1 ak of partial sums converges. So
(sn) is bounded. As vn ↓ `, wn := vn − ` ↓ 0. So by Dirichlet’s Test,

∑
anwn

converges, to c say:

a1w1 + . . . anwn → c (n →∞).

That is
a1v1 + . . . anvn − `(a1 + . . . + an) → c (n →∞).

But a1 + . . . an → b :=
∑∞

1 ak. So

a1v1 + . . . anvn → c + `.b (n →∞),

i.e.
∑

anvn converges.

Q4. (i) |ns| = |es log n| = |e(σ+iτ) log n| = eσ log n = nσ.
(ii) Absolute convergence of

∑
an/ns depends only on |an| and |ns| = nσ, so

depends on s only through σ. If σ2 ≤ σ1, then |an/ns2 | = |an|/nσ2 ≤ |an|/nσ1 =

1



|an/ns1 |. So by the Comparison Test, absolute convergence for s1 implies abso-
lute convergence for s2.
(iii) So any point of Ac is to the left of any point of A: if it were to the right,
this would contradict (ii).
(iv) So Ac, A partition the real line, with Ac lying to the left of A. The two
sets have as common boundary a point σa, the sup of Ac and the inf of A. By
definition of A, Ac, the series is absolutely convergent in Res > σa and not (so
conditionally convergent or divergent) in Res < σa.
Note. 1. We make no statement about what happens for Res = σa (as we shall
not need this case).
2. The above construction of σa is called a Dedekind cut (or Dedekind section)
– as in Dedekind’s construction of the real line R.

Q5 (i). |ns − (n + 1)−s| = |e−s log n − e−s log(n+1)| = | ∫ log(n+1)

log n
se−usdu| ≤

|s| ∫ log(n+1)

log n
e−σudu = (|s|/σ)(n−σ − (n + 1)−σ).

(ii) By replacing an/ns1 by an, we can w.l.o.g. take s1 = 0. As
∑

an converges,
by Cauchy’s General Principle of Convergence, for all ε > there exists N such
that for all m,n ≥ N , |am + . . . + an| < ε. By partial summation, writing sn

for
∑n

1 ak as before,

n∑
m

ak/ks =
n−1∑
m

(sk − sm)(k−s − (k + 1)−s) + (sn − sm)n−s.

So

|LHS| ≤
n−1∑
m

|sk − sm|.|k−s − (k + 1)−s|+ |sn − sm|.|n−s|

< ε.
|s|
σ

n−1∑
m

(1/kσ − 1/(k + 1)σ) + ε.1/nσ

= ε.
|s|
σ

.
(
1/mσ − 1/nσ) <

ε|s|
σmσ

,

as the sum telescopes. So

|LHS| → 0 (m →∞)

if σ > 0. This proves (ii) (recall we reduced first to s1 = 0, σ1 = 0).
(iii) This now follows as in Q4.
Note. 1. Absolute convergence implies convergence, but not conversely in gen-
eral. The two half-planes may differ.
2. They do differ in the case of

∑∞
n=1(−)n−1/ns, which has σa = 1 and

σc = 0. This series is important in connection with the Riemann zeta func-
tion

∑∞
n=1 1/ns of Analytic Number Theory; see Problems 3.
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