M2PM3 SOLUTIONS TO ASSESSED COURSEWORK 1, 2009

5.2.2009

Q1. (i)

$$a_1v_1 + \dots a_nv_n = s_1v_1 + (s_2 - s_1)v_1 + \dots + (s_n - s_{n-1})v_n$$

= $s_1(v_1 - v_2) + s_2(v_2 - v_3) + \dots + s_{n-1}(v_{n-1} - v_n) + s_nv_n.$

(ii) As $v_n \downarrow$, $v_k - v_{k+1} \ge 0$. This and $m \le s_k \le M$ give

$$m(v_k - v_{k+1}) \le s_k(v_k - v_{k+1}) \le M(v_k - v_{k+1}) \quad (k = 1, \dots, n-1), \quad mv_n \le s_n v_n \le Mv_n$$

Sum over k = 1 to n - 1: the left and right telescope. Using (i) for the middle gives

$$mv_1 \le a_1v_1 + \ldots + a_nv_n \le Mv_1.$$

(iii) If $|s_n| \leq M$ for all n, taking m = -M in (ii) gives

$$|a_1v_1 + \ldots + a_nv_n| \le Mv_1$$

Q2. As $v_n \downarrow 0$: $\forall \epsilon > 0 \exists N$ such that for $n \geq N$, $0 \leq v_n < \epsilon$. As $|\sum_{1}^n a_k| \leq M$ for all n (for some M) – given –

$$\sum_{m=1}^{n} a_{k} = |\sum_{1}^{n} a_{k} - \sum_{1}^{m-1} a_{k}| \le 2M \qquad \forall m, n \quad (m \le n).$$

So by Q1(iii), $|\sum_{m}^{n} a_k v_k| \leq 2M\epsilon$ for all $m, n \geq N$. By Cauchy's General Principle, $\sum a_n v_n$ converges (as it is Cauchy).

Q3. As the series $\sum a_n$, its sequence $s_n := \sum_{1}^{n} a_k$ of partial sums converges. So (s_n) is bounded. As $v_n \downarrow \ell$, $w_n := v_n - \ell \downarrow 0$. So by Dirichlet's Test, $\sum a_n w_n$ converges, to c say:

$$a_1w_1 + \ldots a_nw_n \to c \qquad (n \to \infty).$$

That is

$$a_1v_1 + \ldots a_nv_n - \ell(a_1 + \ldots + a_n) \to c \qquad (n \to \infty).$$

But $a_1 + \ldots a_n \to b := \sum_{k=1}^{\infty} a_k$. So

$$a_1v_1 + \ldots a_nv_n \to c + \ell.b \qquad (n \to \infty),$$

i.e. $\sum a_n v_n$ converges.

Q4. (i) $|n^s| = |e^{s \log n}| = |e^{(\sigma+i\tau) \log n}| = e^{\sigma \log n} = n^{\sigma}$. (ii) Absolute convergence of $\sum a_n/n^s$ depends only on $|a_n|$ and $|n^s| = n^{\sigma}$, so depends on s only through σ . If $\sigma_2 \leq \sigma_1$, then $|a_n/n^{s_2}| = |a_n|/n^{\sigma_2} \leq |a_n|/n^{\sigma_1} =$ $|a_n/n^{s_1}|$. So by the Comparison Test, absolute convergence for s_1 implies absolute convergence for s_2 .

(iii) So any point of A^c is to the *left* of any point of A: if it were to the *right*, this would contradict (ii).

(iv) So A^c , A partition the real line, with A^c lying to the *left* of A. The two sets have as common boundary a point σ_a , the sup of A^c and the inf of A. By definition of A, A^c , the series is absolutely convergent in $Res > \sigma_a$ and not (so conditionally convergent or divergent) in $Res < \sigma_a$.

Note. 1. We make no statement about what happens for $Res = \sigma_a$ (as we shall not need this case).

2. The above construction of σ_a is called a *Dedekind cut* (or *Dedekind section*) – as in Dedekind's construction of the real line **R**.

Q5 (i).
$$|n^s - (n+1)^{-s}| = |e^{-s\log n} - e^{-s\log(n+1)}| = |\int_{\log n}^{\log(n+1)} se^{-us} du| \le |s| \int_{\log n}^{\log(n+1)} e^{-\sigma u} du = (|s|/\sigma)(n^{-\sigma} - (n+1)^{-\sigma}).$$

(ii) By replacing a_n/n^{s_1} by a_n , we can w.l.o.g. take $s_1 = 0$. As $\sum a_n$ converges, by Cauchy's General Principle of Convergence, for all $\epsilon >$ there exists N such that for all $m, n \geq N$, $|a_m + \ldots + a_n| < \epsilon$. By partial summation, writing s_n for $\sum_{1}^{n} a_k$ as before,

$$\sum_{m=1}^{n} a_k/k^s = \sum_{m=1}^{n-1} (s_k - s_m)(k^{-s} - (k+1)^{-s}) + (s_n - s_m)n^{-s}.$$

 \mathbf{So}

$$|LHS| \le \sum_{m}^{n-1} |s_k - s_m| \cdot |k^{-s} - (k+1)^{-s}| + |s_n - s_m| \cdot |n^{-s}|$$

$$< \epsilon \cdot \frac{|s|}{\sigma} \sum_{m}^{n-1} (1/k^{\sigma} - 1/(k+1)^{\sigma}) + \epsilon \cdot 1/n^{\sigma}$$

$$= \epsilon \cdot \frac{|s|}{\sigma} \cdot (1/m^{\sigma} - 1/n^{\sigma}) < \frac{\epsilon |s|}{\sigma m^{\sigma}},$$

as the sum telescopes. So

$$|LHS| \to 0 \qquad (m \to \infty)$$

if $\sigma > 0$. This proves (ii) (recall we reduced first to $s_1 = 0$, $\sigma_1 = 0$). (iii) This now follows as in Q4.

Note. 1. Absolute convergence implies convergence, but not conversely in general. The two half-planes may differ.

2. They do differ in the case of $\sum_{n=1}^{\infty} (-)^{n-1}/n^s$, which has $\sigma_a = 1$ and $\sigma_c = 0$. This series is important in connection with the *Riemann zeta func*tion $\sum_{n=1}^{\infty} 1/n^s$ of Analytic Number Theory; see Problems 3.

NHB