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QL. ()
av1 + ... apvy, = S1v1+ (82— S1)v1 .o 4 (S — Sn—1)Un
= s1(v1 —v2)+82(va —v3) + ...+ Sn—1(Vn—1 — Un) + SpUn.
(ii) As vy, |, vg — Vg1 > 0. This and m < s < M give
m(vg—vgsr1) < sp(vp—vpr1) < M(vp—vi11) (B=1,...,n=1), mu, < s,v, < Mu,.

Sum over k =1 to n — 1: the left and right telescope. Using (i) for the middle
gives
muv; < avy + ...+ apv, < Moy,

(iii) If |s,| < M for all n, taking m = —M in (ii) gives
lajvr + ... + apvn| < Moy,

Q2. As v, | 0: Ve > 0 3N such that forn > N, 0< v, <e. As|Y jap| <M
for all n (for some M) — given —

m—1

|zn:ak|=\zn:ak—2ak|§2M Ym,n (m <n).
m 1

1

So by Q1(iii), | Y arvk| < 2Me for all m,n > N. By Cauchy’s General Prin-
ciple, Y anv, converges (as it is Cauchy).

Q3. As the series ) a,, its sequence s, := > aj, of partial sums converges. So
(sn) is bounded. As v, | ¢, w, := v, — £ | 0. So by Dirichlet’s Test, > a,w,
converges, to ¢ say:

w1 + ... a, W, — C (n — 0).

That is
a1vy + ... apvy —Llag + ...+ ay) —c (n — 0).

But a; +...a, = b:=> " ax. So
aivi +...apv, — c+L.b (n — 0),
ie. Y ajv, converges.

Q4- (1) |n€| — |eslogn| — |e(o+iT)logn| — ealogn =ne.

ii > n/n° > n = y S
(ii) Absolute convergence of > a,/n® depends only on |a,| and |n®| = n?, so
depends on s only through o. If 09 < o1, then |a, /n®2| = |a,|/n%2 < |a,|/n* =



|an/n®t]. So by the Comparison Test, absolute convergence for s; implies abso-
lute convergence for so.

(iii) So any point of A€ is to the left of any point of A: if it were to the right,
this would contradict (ii).

(iv) So A°, A partition the real line, with A€ lying to the left of A. The two
sets have as common boundary a point o, the sup of A and the inf of A. By
definition of A, A€, the series is absolutely convergent in Res > o, and not (so
conditionally convergent or divergent) in Res < oy.

Note. 1. We make no statement about what happens for Res = o, (as we shall
not need this case).

2. The above construction of o, is called a Dedekind cut (or Dedekind section)
— as in Dedekind’s construction of the real line R.

Q5 () |ns 7 (n + 1)—s| _ |efslogn _ efslog(n+1 |f1?gg7(1n+1 7usdu| <
1 +1 —ou —0o
5| fiot D ey, = (|s| /o) (=7 — (n+1) 7).

(ii) By replacing a,/n®! by a,, we can w.l.o.g. take s1 = 0. As Y a, converges,
by Cauchy’s General Principle of Convergence, for all € > there exists N such
that for all m,n > N, |a;, + ...+ an| < e. By partial summation, writing s,
for > ax, as before,

n—1

Zak/ks = Z Sk — Sm) (k™ = (k4+1)7%) + (s — $m)n"".

So

n—1
|LHS| < Z |sk — sml- k7% = (k+ 1) 7% + |sn — Sm|.|n 77|

Z 1/k? =1/(k+1)7) +el/n?

€[]

| | (1/m 1/n%) < .

me’

as the sum telescopes. So
|LHS| — 0 (m — o0)

if ¢ > 0. This proves (ii) (recall we reduced first to s; =0, o1 = 0).

(iii) This now follows as in Q4.

Note. 1. Absolute convergence implies convergence, but not conversely in gen-
eral. The two half-planes may differ.

2. They do differ in the case of Y. (—)""'/n®, which has o, = 1 and
0. = 0. This series is important in connection with the Riemann zeta func-
tion >, 1/n® of Analytic Number Theory; see Problems 3
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