M2PM3 ASSESSED COURSEWORK 1, 2009

Set Th 28 Jan 2009. Deadline noon Wed 4 Feb 2009. 20 marks.
Q1. Abel's Lemma, or Partial Summation.
Write $s_{n}:=a_{1}+\ldots+a_{n}$. Show that
(i) $a_{1} v_{1}+\ldots+a_{n} v_{n}=s_{1}\left(v_{1}-v_{2}\right)+\ldots+s_{n-1}\left(v_{n-1}-v_{n}\right)+s_{n} v_{n}$.
(ii) If $m \leq a_{1}+\ldots+a_{n} \leq M$ for all n, and v_{n} is positive and decreasing, then $m v_{1} \leq a_{1} v_{1}+\ldots+a_{n} v_{n} \leq M$.
(iii) If $\left|s_{n}\right| \leq M$ for all n, then $\left|a_{1} v_{1}+\ldots a_{n} v_{n}\right| \leq M v_{1}$ for all n.

Q2. Dirichlet's Text for Convergence.
If (a_{n}) has bounded partial sums $s_{n}=\sum_{1}^{n} a_{k}$ and $v_{n} \downarrow 0$, then $\sum a_{n} v_{n}$ is convergent.

Q3. Abel's Test for Convergence.
If $\sum a_{n}$ converges and $v_{n} \downarrow \ell$ for some ℓ, then $\sum a_{n} v_{n}$ converges.
Q4. Dirichlet series: Half-plane of absolute convergence.
For $s \in \mathbf{C}$, write $s=\sigma+i \tau$.
(i) Show that $\left|n^{s}\right|=n^{\sigma}$.

A series of the form $\sum_{n=1}^{\infty} a_{n} / n^{s}$ (the a_{n} can be complex) is called a Dirichlet series.
(ii) Show that absolute convergence of the series at s depends only on $\sigma=$ Res. Show also that if the series is absolutely convergent for $s_{1}=\sigma_{1}+i \tau_{1}$, it is absolutely convergent for any $s_{2}=\sigma_{2}+i \tau_{2}$ with $\sigma_{2} \geq \sigma_{1}$.
(iii) Let A (for 'absolute convergence') be the set of real σ for which $\sum_{1}^{\infty} a_{n} / n^{s}$ converges absolutely for s with Res $=\sigma, A^{c}:=\mathbf{R} \backslash A$ be its complement. Show that any point of A^{c} is to the left of any point of A.
(iv) Deduce that if $\sigma_{a}:=\sup \left\{\sigma: \sigma \in A^{c}\right\}$, then also $\sigma_{a}=\inf \{\sigma: \sigma \in A\}$, that $\sum a_{n} / n^{s}$ is absolutely convergent for $\sigma \in A$, and not absolutely convergent for $\sigma \in A^{c}$. (\{s:Res>$\left.\sigma_{a}\right\}$ is called the half-plane of absolute convergence.)

Q5. Dirichelt series: Half-plance of convergence.
(i) Show that $\left|n^{-s}-(n+1)^{-s}\right| \leq(|s| / \sigma)\left(n^{-\sigma}-(n+1)^{-\sigma}\right)(\sigma>0)$.
(Hint: consider $\int_{\log n}^{\log (n+1)} s e^{-u s} d u$.)
(ii) Show that if $\sum a_{n} / n^{s}$ converges for $s_{1}=\sigma_{1}+i \tau$, then it converges for all $s=\sigma+i \tau$ with $\sigma>\sigma_{1}$. (Hint: Reduce to $\sigma_{1}=0$ by replacing a_{n} by $a_{n} / n^{\sigma_{1}}$, and then use partial summation.
(iii) Deduce (as in Q4) that there is a half-plane $\sigma>\sigma_{c}$ of convergence, with divergence in $\sigma<\sigma_{c} .\left(\left\{s:\right.\right.$ Res $\left.>\sigma_{c}\right\}$ is called the half-plane of convergence.)

