M2PM3 COMPLEX ANALYSIS: EXAMINATION, 2008

Q1. (i) Evaluate $(1+2 i)^{2}$. Hence or otherwise find both roots of the complex quadratic $z^{2}+2 i z+2-4 i$, in the form $a+i b$ with a, b real.
(ii) Find the four roots of the quartic $z^{4}+1$.

Plot them in the Argand diagram.
Factorize the quartic
(a) as a product of four complex linear factors,
(b) as a product of two real quadratics.
(iii) By considering the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1(a, b>0)$ parametrized by $x=a \cos \theta, y=b \sin \theta$, or otherwise, show that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}=\frac{2 \pi}{a b} \tag{7}
\end{equation*}
$$

Q2. Let $f(z)=u(x, y)+i v(x, y)$ be holomorphic in a domain D.
(i) State without proof the Cauchy-Riemann equations for u, v.
(ii) Define the term harmonic, and show that u, v are harmonic.
(iii) Given u, describe how to find v and f.
(iv) If $u(x, y)=x^{3}-3 x y^{2}$, find v and f.
(v) If $u(x, y)=x /\left(x^{2}+y^{2}\right)$ v and f.
(vi) Check without differentiation that the u in (iv) and (v) are indeed harmonic.

Q3. (i) State without proof Cauchy's integral formula for the value $f(a)$ of a function f holomorphic at a point a inside a contour γ.
(ii) Show that

$$
\begin{equation*}
f^{\prime}(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{(z-a)^{2}} \tag{10}
\end{equation*}
$$

(iii) State without proof the corresponding formula for $f^{(n)}(a)$.
(iv) If γ is the circle centre a and radius R, and $|f(z)| \leq M$ for $|z-a| \leq R$, show that

$$
\begin{equation*}
\left|f^{(n)}(a)\right| \leq n!M / R^{n} \tag{2}
\end{equation*}
$$

(v) What is meant by saying that f is an entire function?
(vi) If f is entire and $|f(z)| \leq c|z|^{k}$ for $|z|$ large and some constant c, show that f is a polynomial of degree at most k.

Q4. (i) Show (by considering the unit circle parametrized by $z=e^{i \theta}$, or otherwise) that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}, \quad \int_{0}^{2 \pi} \frac{\sin 3 \theta}{5-4 \cos \theta} d \theta=0 \tag{10}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{2} \tag{10}
\end{equation*}
$$

