M2PM2 EXAM 2008

1. Let G be the set consisting of the following twelve permutations in S_{6} :

$$
\begin{aligned}
& e,(123)(456),(146)(253),(163)(245),(142)(365), \\
& (132)(465),(164)(235),(136)(254),(124)(356), \\
& (15)(26),(15)(34),(26)(34) .
\end{aligned}
$$

You are given that G is a subgroup of S_{6}. Answer the following questions about the group G, giving brief justifications for your answers.
(i) Is G abelian ?
(ii) Find a subgroup of size 3 in G.
(iii) Find a subgroup of size 4 in G.
(iv) Is your subgroup of size 4 normal in G ?
(v) Does G have a subgroup of size 6 ?
(vi) You are given that G is isomorphic to one of the following groups:

$$
C_{12}, C_{2} \times C_{2} \times C_{3}, D_{12}, A_{4}, S_{3} \times C_{2} .
$$

Which one of these is G isomorphic to ?
2. Let G and H be groups. Define what is meant by a homomorphism $\phi: G \rightarrow H$. What does it mean to say that ϕ is surjective ?
(a) Suppose G and H are finite groups and there is a surjective homomorphism $\phi: G \rightarrow H$. Stating (but not proving) any standard results you need, prove that $|H|$ divides $|G|$.
(b) For each of the following pairs G, H of groups, say whether or not there exists a surjective homomorphism $\phi: G \rightarrow H$, and justify your answer:
(i) $G=D_{10}, H=C_{2}$
(ii) $G=D_{10}, H=C_{5}$
(iii) $G=S_{4}, H=C_{2}$
(iv) $G=S_{4}, H=C_{6}$
(v) $G=S_{4}, H=D_{6}$.
3. (a) State the Cayley-Hamilton theorem.
(b) Let A be an $n \times n$ matrix over \mathbb{C} such that the only eigenvalue of A is 0 . Prove that $A^{n}=0$.
(c) Let V be the vector space over \mathbb{R} consisting of all polynomials in x of degree at most 3 . Let $T: V \rightarrow V$ be the linear transformation defined by

$$
T(p(x))=p(x)+(x+1) p^{\prime}(x)-x^{2} p^{\prime \prime}(x)
$$

for all $p(x) \in V$. (As usual, $p^{\prime}(x)$ and $p^{\prime \prime}(x)$ denote the first and second derivatives of $p(x)$.)
(i) Find the eigenvalues of T.
(ii) Is there a basis of V consisting of eigenvectors of T ?
(iii) Find a polynomial f such that $T^{-1}=f(T)$.
4. Let A and B be $n \times n$ matrices, with $n \geq 2$. What does it mean to say that A is similar to B ?
(a) If A is similar to B, and $p(x)$ is any polynomial, prove that $p(A)$ is similar to $p(B)$.
(b) Say which of the following quantities are invariant under similarity (i.e. are the same for any matrix which is similar to A), justifying your answer briefly:
(i) $\operatorname{det}\left(A^{2}-A\right)$
(ii) $\operatorname{rank}\left(A+A^{T}\right)$
(iii) $\operatorname{trace}\left(A+A^{T}\right)$.
(c) Find the Jordan Canonical Form of the matrix

$$
A=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(d) Let

$$
B=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Is B similar to the matrix A in part (c) ?

